• Title/Summary/Keyword: concrete materials

Search Result 4,018, Processing Time 0.037 seconds

Evaluation on the impact of Lowest Bid Contracts on Site Operations in times of Severe Economic Downturn (건설경기 침체기의 최저가 낙찰제 건설현장의 운영 실태분석과 개선 방안 도출)

  • Koo, Bon-Sang;Jang, Hyoun-Seung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.146-153
    • /
    • 2009
  • The year 2008 was a hard year for Korea's construction companies. The real estate downturn resulted in halting new construction and stopping existing work, and inflation of global oil prices caused price hikes in rebar and concrete materials. As a solution to reducing the budget, the newly appointed government announced plans to increase low cost bid contracts from 10 billion to 30 billion won. When such economical and political factors negatively impact the construction market, projects based on low cost contracts are the hardest hit. Many problems already inherent in low cost bid contracts become accentuated. Consequently, this provides an opportune time to actually study and analyze the issues in these projects. This paper introduces the findings made from investigating four projects struggling to make ends meet in the year 2008. Results show that flow of cash (i.e., liquidity), or lack thereof, was the root cause which in turn was hampered by failed mechanisms for design changes, material inflation. Attributing cash flow risk to the bottom of the production structure (i.e., small business subcontractors) was also a problem within the industry. Contractors need a better way to prepare against material price fluctuations, and owners need to assist in expediting payment during times of extreme downturn.

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

Characterization of Cement Mortar with Plastic Fine Aggregates (플라스틱 잔골재에 의한 시멘트 모르타르 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.383-388
    • /
    • 2019
  • The present study evaluated experimentally the effects of the type and content of plastic fine aggregates on cement mortar in order to utilize waste platics as raw materials of concrete. The two kinds of plastics, LLDPE and HDPE were used, and the mixing rate of plastic fine aggregates was increased 0, 25, 50, 75, 100%. The mortar of LLDPE fine aggregate and HDPE fine aggregate showed similar tendency in flow and material separation resistance, density and water absorption, compressive strength and flexural strength by age. The flowability of mortar mixed with plastic fine aggregates was increased up to 50% but decreased at 75% or more. The material separation resistance of mortar with plastic fine aggregates was also dramatically decreased. On the other hand, due to the low density of plastics, the density of mortar decreased with the mixing of plastic fine aggregates. Due to the low adhesion between plastic fine aggregates and cement, the compressive strength by age was decreased in proportion to the mixing ratio of plastic aggregate, but the flexural strength of each age decreased with maintaining a certain level at 50% or more of plastic fine aggregate content.

Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends (발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구)

  • Lee, Byung Hwa;Kim, Jin Ho;Kim, Gyu Bo;Kim, Seng Mo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • Soot and tar which were derived from combustion or pyrolysis processes in Puverized Coal(PC) furnace or boiler have been significantly dealing in a radiative heat transfer and an additional source of NOx. Furthermore, the increasing for the use of a coal with low caloric value gives rise to a lot of tar-soot yield and LOI in a recycled ash for using cement materials. So, the ash with higher tar-soot yield and LOI can not recycle due to decreased strength of concrete. In this study, tar-soot yields and flame structures were investigated using the LFR for a blending combustion with bituminous coal and sub-bituminous coal. Also, The investigation were conducted as each single coals and blending ratio. The coals are used in a doestic power plant. In the experimental results, sub-bituminous coal with high volatile contents shows longer soot cloud length than bituminous coal, but overall flame length was shorter than bituminous coal. Tar-soot yields of sub-bituminous coal is lower than those of bituminous coal. Combustion characteristics are different between single coal and blended coal. Therefore, finding an optimal coal blending ratio according to coal rank effects on tar-soot yields.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

Suggestion for Determination of Minimum $S_D$ for Rut-Resistable Asphalt Concretes (고온 내변형 아스팔트혼합물 선정을 위한 변형강도 임계치 결정 방안)

  • Kim, Kwang-W.;Cho, Byung-J.;Lee, Soon-Jae;Doh, Young-S.
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.193-204
    • /
    • 2007
  • Deformation strength($S_D$) is a property which shows relatively good correlation with rut resistance of asphalt mixtures at high temperature. The Asphalt Pavement Analyzer (APA) is widely used as an equipment for estimating rut resistance of asphalt mixtures. The APA was used as corresponding property of the $S_D$ to estimate rutting resistance of asphalt mixtures. Many data were collected to establish the correlation of $S_D$ with APA. For $S_D$ test, the specimen is submerged into the $60^{\circ}C$ water for 30 minutes before applying a vertical load at the speed of 50mm/min to obtain peak load (P) and deformation (y) for $S_D$ calculation. For the same materials, APA test was performed. Relation of the $S_D$ with APA rut depth was evaluated using regression analysis. The $R^2$ value was 0.76, indicating this simple test procedure being a possible method for predicting deformation resistance of asphalt concretes at high temperature. It was also shown that, using the regression model, minimum value(s) of $S_D$ of surface course asphalt mixture or binder course for a particular road level can be determined. The limit values may be possible to use as cut-off value(s) of asphalt mixtures for the layer after further elaborated studies.

  • PDF

Substrate Quality Effects on Decomposition of Three Livestock Manure Composts with Similar Stability Degree in an Acid Loamy Soil

  • Lim, Sang-Sun;Jung, Jae-Woon;Choi, Woo-Jung;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • Decomposition of compost applied to soils is affected basically by its biological stability; but, many other chemical properties of the compost may also influence compost organic-C mineralization. This study was conducted to investigate the principal substrate quality factors of composts that determine C mineralization of compost with similar stability degree (SD). Three composts samples with similar SD but different chemical properties such as pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ were mixed with an acid loamy soil and $CO_2$ emission was monitored during the laboratory incubation for 100 days. Temporal pattern of cumulative compost organic-C mineralization expressed as % of total organic C ($C_{%\;TOC}$) followed double exponential first order kinetics model and the $C_{%\;TOC}$ ranged from 4.8 to 11.8% at the end of incubation. The pattern of C%TOC among the composts was not coincident with the SD pattern (40.1 to 58.6%) of the composts; e.g. compost with the lowest SD resulted in the least $C_{%\;TOC}$ and vice versa. This result indicates that SD of compost can not serve as a concrete predictor of compost mineralization as SD is subject not only to maturity of compost but also to characteristics of co-composting materials such as rice hull (low SD) and sawdust (high SD). Meanwhile, such pattern of $C_{%\;TOC}$ collaborated with pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ of the composts that are regarded as chemical indices of the progress of composting. Therefore, for better prediction of compost mineralization in soils, it is necessary to consider both SD and other chemical indices (pH, C/N, and molar ratio of $NH_4^+$ to $NO_3^-$).

An Analytical Model Proposal Considering Different Surface Type of Bond Behavior between GFRP Rebar and Concrete (GFRP 보강근의 외피형상을 고려한 부착 해석모델 제안)

  • Park, Ji-Sun;Song, Tae-Hyeob;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2019
  • The bond analysis model equation was proposed through the regression analysis of the experimental values of bond behavior for each rebar. In order to verify the appropriateness of the bond analysis model equation, the bond behaviors calculated by the proposed bond analysis model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models. The former models can not consider the different properties of GFRP rebar according to composed materials, mixing and manufacturing method and the latter has limitation to express the relationships between bond behavior because of derived formula by numerical analysis. This study proposed the analytical model different considering bond mechanism according to surface type. In order to verity the appropriateness of the bond analytical model, the bond behaviors calculated by the proposed bond analytical model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models.