• Title/Summary/Keyword: concrete materials

Search Result 4,018, Processing Time 0.031 seconds

Experimental Study on Development of Artificial Fishing Reefs Using Environment-Friendly Sulfur Concrete (환경친화적인 유황콘크리트 인공어초 개발을 위한 실험적 연구)

  • Park, Sung-Bae;Kim, Seok-Chel;Kim, Kyoung-Hoon;Hong, Chong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.58-64
    • /
    • 2007
  • New artificial fishing reefs are developed using modified sulfur concrete. Modified sulfur concrete, which is made of by-product aggregates and modified sulfur binder, has good properties, including high density, less water absorption, high strength, high salt resistance, and good affinity for living organisms. This paper shows the mechanical properties of modified sulfur concrete and its field tests under the sea. We have found that the pH-neutral materials attach microalgae and seaweed more readily, compared to the pH-high materials.

Flow properties of Ultra Fine Cement with Superplasticizer (유동화재 변화에 따른 초미립자 시멘트의 유동특성)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.58-63
    • /
    • 1999
  • Almost all concrete structures have many inevitable cracks for various reasons such as drying shrinkage, heat liberation of cement, fatigues or repeating loads and movements. Conventionally, they are repaired with epoxy materials. The Epoxy resins used by repair materials are different from properties of the base concrete materials such as thermal and mechanical properties - thermal expansion coefficients, bending strength. And the epoxy resin cannot release the water inside the concrete structure and cause corrosion of the steel bars. In this study, before the experiment got launched, we had analyzed cement and slag. Then We blended the two grades of ultra fine cement using high blaine cement and slag. And the cement slurry was produced by water and suprplasticizer to each blended ultra fine cement in various conditions. The slurry produced by each conditions was evaluated with flow properties such as viscosity, dropping time, segregation and observation of dry surface after injection.

  • PDF

A Fundamental Study on Method of Packaged Dry Combined Materials for Concrete - based on physical properties of concrete according to adding-water ratio - (건조된 콘크리트 재료의 포장화에 관한 기초적 연구 -가수율에 따른 콘크리트의 기초물성을 중심으로-)

  • 한다희;황병준;김제섭;박희곤;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.493-496
    • /
    • 2003
  • Most concrete is recently made of an aggregate which is properly absorbed, and carried in it in order to do capability at every fields. We have been close to demand new capability of high flowing and enduring for specific concretes. That is difficult to cope with claiming the efficiency on deterioration from lack of a high quality aggregate. Therefore, for solving the problems we apply to a packing method for using dried materials. That is to say it is a kind of making into an instant. In this study, There is a purpose to present fundamental data, comparing and analyzing a phenomenon about aggregate absorption following the rate of adding water, for using existing materials.

  • PDF

Economic and Fast-track Rehabilitation of Concrete Pavements and Bridge Decks

  • Ramseyer, Chris;Chancellor, Brent;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • The last 10 years have seen considerable growth in the use of proprietary and special repair cements for concrete pavements in the state of Oklahoma. Many of these products lend themselves to "fast track" construction techniques that allow reopening to traffic within 12 hours or less. These products achieve high early strengths by accelerating the Portland cement hydration process for both Type I and Type III cements. In this paper, the important features of a durable repair which include strength, compatibility and bond or adhesion are first discussed. Then the development, testing and field implementation of the aforementioned materials are discussed including the learning curve required to implement a repair system, not just install a new material. Some of the materials discussed, while expensive on a cost per unit basis, hold great promise for economical use on fast track project.

An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members (탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구)

  • 박제용;안동준;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

Experimental Evaluation for Vibration Reduction Capability of Vibration-Controlled Concrete Panels (진동제어 콘크리트 패널의 제진성능 평각에 관한 실험적 연구)

  • 최우성;박용구;조성호;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.351-356
    • /
    • 1997
  • With the aid of advanced structural engineering, the construction of infrastructures has been recently accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause civil petitions associated with vibration-induced damages or nuisances. As part of the decrease of vibration induced damage, the objective of this study is to develop vibration-controlled concrete with vibration-reduced materials, which can be recycled from obsolete materials, such as aged tires, plastics and etc. Appropriate mix proportion has been used for making 10 reinforced concrete panels with vibration-reduced materials, which have been tested to investigate on vibration reduction capability, based on the time and frequency domain analysis, and vibration velocity level analysis. Vibration-reduced mixtures are latex, styrofoam, rubber powder and plastic resin, which have been determined to by reduce vibration.

  • PDF

Physical properties of Rapid-Setting Asphalt Concrete Grouting materials (초속경형 아스팔트 콘크리트용 주입재의 물리적 특성)

  • Park Won-Chun;Mun Kyoung-Ju;Jo Young-Ho;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.377-380
    • /
    • 2005
  • The objective of this study is to evaluate the physical properties of rapid-setting asphalt concrete grouting materials. This study investigates the fluidity, viscosity and compressive strength at 3-hour of grouting materials with various mixing ratio. From the test results, when the quantity of CSA is over about 30 $\%$, the compressive strength of 3-hour was satisfied a minimum requirement of 7 days in Japan. Also, the fluidity for the time to infiltrate into pore of the asphalt concrete are enough to be applied in construction field.

  • PDF

A Study on the Characteristics of Sound Insulation at the Circular Voided Concrete Floor in the Multi-Housing (공동주택에서 중공 슬래브 바닥의 차음 특성에 관한 연구)

  • 손철수
    • Journal of the Korean housing association
    • /
    • v.11 no.1
    • /
    • pp.171-181
    • /
    • 2000
  • The purpose of the resent research is to investigate the characteristics of sound insulation at the circular voided concrete slab in the multi-housing. In order to do this research, the method for field measurement of floor impact sound level was used following the Korea Standard F2810-1996. For the multi-housing, three kinds of circular voided concrete slabs are used to measure the characteristics of sound insulation.The results are as follows; 1.The main factor affecting the characteristics of sound insulation at the circular voided concrete slab in the multi-housing is sound-absorbing materials in the circular tube. 2. The main factor to effect the difference of sound pressure level is circular tube in the concrete slab. 3. The forms of circular tubes effect the characteristics of sound insulation at the circular tube. 4. Sound Pressure Level resulting from the piping direction of circular tubes in little different to octave band level.More study will be needed about the depth and distance of sound insulation materials, and the components of sound insulation materials for the multi-housing.

  • PDF

Evaluation of the Mechanical Properties of Light Transmitting Concrete using TiO2 Photocatalyst (이산화티탄 광촉매 적용 광투과 콘크리트 역학특성 평가)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.63-64
    • /
    • 2019
  • Due to the rapid deterioration of the domestic atmosphere, people are suffering from inconveniences such as wearing fine dust masks all the time during outdoor activities. In this study, light transmitting concrete, LEFC(Light Emotion Friendly Concrete), using TiO2 photocatalyst was produced. Since the characteristics of LEFC where acrylic rods are inserted require self-consolidating performance, the purpose was to utilize UHPC(Ultra High Performance Concrete) materials to obtain high-flowability. Further, the compressive strength and flexural strength were evaluated to prevent the reduction of epidemiological performance by utilizing UHPC materials. As such, a basic study was carried out to develop LEFC materials using photocatalyst that can purify the air and stimulate human sensibility.

  • PDF

Experimental Investigation of Shear Behavior of Reinforced Concrete Beam Repaired with DFRCC at Cover Thickness

  • Kim Jang-Ho Jay;Jun Kyung-Suk;Bae Byung-Won;Lim YunMok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.577-580
    • /
    • 2004
  • Recently, DFRCCs (Ductile Fiber Reinforced Cementitious Composites), materials with remarkable ductility when compared to ordinary fiber-reinforced concrete (FRC), have been developed and studied actively in the US, Japan, and many European countries. The transformation of failure behavior from brittle to ductile is achieved by incorporating with fracture mechanics concept especially micro-mechanical models approach of cementitious composite materials in manufacturing ordinary fiber-reinforced composites. The purpose of this study is to accurately understand the shear behavior of DFRCC repaired RC beams. Using a four-point bending test, the shear strengths and shear stress-deflection relations of DFRCC repaired RC specimens are obtained. The results show that DFRCC can be effectively used for repairing materials for concrete structures.

  • PDF