• Title/Summary/Keyword: concrete material

Search Result 4,373, Processing Time 0.03 seconds

A nonlinear stress analysis of nuclear containment building using microscopic material model (미시적 재료모델을 사용한 원전 격납건물의 비선형 응력해석)

  • 이상진;김현아;서정문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.320-324
    • /
    • 2000
  • Nonlinear stress analysis of nuclear containment building is carried out using microscopic concrete material model. The present study mainly focuses on the evaluation of the ultimate pressure capacity of idealized containment building in nuclear power plant. For this purpose, an eight-node degenerated shell element it adopted and an imaginary opening in the apex of containment building is allowed in FE model. From numerical analysis, the adopted concrete material model performs well and has a good agreement with the result obtained by using ABAQUS. Finally, we propose the present study as a benchmark test for nonlinear analysis of containment building.

  • PDF

A Study on the Material Properties and Durabilities of Epoxy-Type Repairing Materials (에폭시계 보수재료의 재료특성 및 내구성능 분석)

  • 김도겸;이장화;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.659-664
    • /
    • 1997
  • RC structures can deteriorate for many defective factors. In the repair and retrofit works of concrete, epoxy resins are widely used as repair materials. The object of this study is to investigate the material properties and durabilities of epoxy resins which are commonly used in repairing concrete. The material properties such as line-expansion modulus, viscosity, microstructure and physical parameter as well as the durabilities such as gravity change, tensile strength, elongation change were carried out.

  • PDF

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns (열화된 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.45-54
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the performance assessment of deteriorated reinforced concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used to analyze these reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete bridge columns. The proposed numerical method for the performance of damaged reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Study on the applicability of regression models and machine learning models for predicting concrete compressive strength

  • Sangwoo Kim;Jinsup Kim;Jaeho Shin;Youngsoon Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.583-589
    • /
    • 2024
  • Accurately predicting the strength of concrete is vital for ensuring the safety and durability of structures, thereby contributing to time and cost savings throughout the design and construction phases. The compressive strength of concrete is determined by various material factors, including the type of cement, composition ratios of concrete mixtures, curing time, and environmental conditions. While mix design establishes the proportions of each material for concrete, predicting strength before experimental measurement remains a challenging task. In this study, Abrams's law was chosen as a representative investigative approach to estimating concrete compressive strength. Abrams asserted that concrete compressive strength depends solely on the water-cement ratio and proposed a logarithmic linear relationship. However, Abrams's law is only applicable to concrete using cement as the sole binding material and may not be suitable for modern concrete mixtures. Therefore, this research aims to predict concrete compressive strength by applying various conventional regression analyses and machine learning methods. Six models were selected based on performance experiment data collected from various literature sources on different concrete mixtures. The models were assessed using Root Mean Squared Error (RMSE) and coefficient of determination (R2) to identify the optimal model.

Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material (무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가)

  • 김인섭;이종규;추용식;김병익;신영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.