• Title/Summary/Keyword: concrete high-rise structures

Search Result 207, Processing Time 0.024 seconds

An Experimental Study of Tension Properties on New Developed Up-Set Coupler (Up-Set Coupler 이음철근의 인장특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kang, Tae-Sung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.109-115
    • /
    • 2008
  • As structures are getting super-rise and large-sized, introducing the construction methods such as prefabrication of bar-meshes and complex method are being actively discussed to pursue the high quality of reinforced concrete, the simplification of field works, and the reduction of duration, as well as the study on how to connect reinforcing rods, which occurs while applying the same methods, is in progress Also, the pressure welded joint is a kind of method that heats the ends of reinforced bars locally and joint them, and after the pressure welding, the vulnerable part in the reinforced bar occur. Thus, in the construction field, the throughout quality control is necessary because of the delayed duration and the lowered construct ability. In this study, of the traditional lap splice method and the mechanical splice one, the screw coupler, we tried to look into through experiments the prefabrication method of bar-meshes, a typical joint method usually used for the joint parts for PSC structures applying the reinforced bar with its big diameter, and a newly-developed up-set coupler method. And we also examined the characteristic of tensile.

A Study on the Development of Force Limiting Devices(FLD) which Induce Yielding before Elastic Buckling (좌굴전 항복유도 장치(FLD) 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak;Oh, Young Suk;Kim, Chae Yeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • The steel members are applied to high rise building since they have high strength compare to the concrete member. On the other hand, the elastic buckling is likely to occur in steel member because of their small section. When the elastic buckling occur, the steel structure lose a load carrying capacity. The steel frame would be unstable due to a rapid decline in strength by buckling. The purpose of this study is the development of FLD(Force Limiting Device) to prevent a elastic buckling for a slender member. Further, the behavior of steel structures with FLD would be stable by high energy absorption capacity. The proposed type of FLD is the type of out-of-plane resistance. In this study, member test and FEM analysis for proposed type were performed. The test parameters are thickness and gradient angle of out-of-plane plate. The proposed type may be effective method for FLD.

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Correlation of Experimental ana Analytical Inelastic Responses of 1:12 Scale Irregular High-Rise RC Buildings (1:12축소 비정형 고층 RC 건물의 비선형거동에 대한 실험과 해석의 상관성)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.95-104
    • /
    • 2007
  • Three types of high-rise RC building structures having irregularity in the lower two stories were selected as prototypes and were performed nonlinear static analysis by using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. The first one has a symmetrical moment resisting frame (Model 1), the second has an infilled shear wall in the central frame (Model 2), and the third has an infilled shear wall only in one of exterior frames (Model 3). Fiber model, which consists of concrete and reinforcing bar represented from stress-strain relationship, is adapted used for simulate the nonlinearity of members, and MVLEM(Multi vertical linear element model) is used for simulate the behavior of wall. The analytical results are simulate the behavior of piloti stories well, for example, the stiffness and yield farce of piloti stories, the up-lift of wall and the variation of lateral stiffness of column due to the variation of axial forces. Overstrength of Model 2 and Model 3 are about 2 times larger than that of Model 1. The reason of the high oversttrength and ductility of Model 2 and Model 3 is that the conservative design of Model 2 and Model 3, whose beam and column sections are the same as those of Model 1. The ductilities of Model 1 and Model 3 are slightly larger than that of Model 1 and Model 3. Model 1 and Model 3 reached mechanism condition, whereas Model 2 failed to the shear failure of shear wall and the large axial forces in columns due to large overturning moment.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

The Behavior of Anchor Connections of Cold-Formed Steel Roof Truss (경량형강 지붕트러스 앵커부의 거동)

  • Kwon, Young Bong;Kang, Sueng Won;Chung, Hyun Suk;Choi, Young Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.519-529
    • /
    • 2003
  • In recent years, the use of cold-formed steel roof truss has been increased in the steel houses and high-rise apartments. The design of the roof truss anchor connections has been based on the experience and decision of designers. In this paper, the structural behavior of anchor connections based on experimental and decision is described. In the tests, truss members and connection members were jointed directly with self-drilling screw fasteners and the simple shaped connection member with excellent workability and structural capacity was used to connect roof truss and sub-structure. The connecting method was selected according to the construction material of sub-structure: chemical anchor for reinforced concrete structure and welding or DX-Pin for steel structures. The pull-out tests of various type anchor connection were executed to obtain the strength and the stiffness and the result have been compared with AISI(1996) and AlSC(1989) specifications, Simple formulas for the shear strength of screw connections have been propose and compared with tests.

Structures and Competitiveness of Softwood Products in Korean Import Market (우리나라 수입(輸入) 침엽수재(針葉樹材) 시장구조(市場構造) 및 수종별(樹種別) 경쟁력(競爭力))

  • Kim, Wae-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 1991
  • Protection of tropical forest affects on significant reduce of tropical hardwood supply, and softwood resources will be increasingly important for the timber security in Korea. U.S. softwood log was most favorite species for Korean softwood log importers in overall import conditions except price stablization and consistency of export policy. Reduced export volume from Pacific Northwest to Korean market has been immediately replenished by rediata pine from New Zealand and Chilean plantation. Siberian timber will hardly play major roles in Korean timber market unless budding structure. softwood plywood and softwood furniture uses are enhanced. Recent rapid rise of labor cost and reducing tariff rrate in Korea provided better opportunities for import lumber in building materials market. Dry dimension lumber was relatively profitable when processed from import U.S. soft-wood log while green lumber was favorable products processed from radiata pine log in Korean lumber market. This means U.S. softwood lumber would have better opportunity to market for '2${\times}$'4 studs when wood frame housing is introduced. On the other hand while radiata pine is competitive on temporary construction lumber such as supporter and concrete forming frame in Korea. Shortage of raw material for the new capacity of board plants in Korea will be it bottle neck. Major log export countries to Korea as U.S. New Zealand and Chile showed high trade intensity indices of composite hoard produces for Korean market. As Korea efforts to diversify import sources, and tariffs are reduced to 8% as scheduled by 1994. countries of scoring higher comparative advantages as Portugal. Brazil, Austria as well as New Zealand will have better opportunity to penetrate into promised Korean composites hoard market.

  • PDF