• Title/Summary/Keyword: concrete high-rise structures

Search Result 207, Processing Time 0.025 seconds

Behavior of concrete-filled double skin steel tube beam-columns

  • Hassan, Maha M.;Mahmoud, Ahmed A.;Serror, Mohammed H.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1141-1162
    • /
    • 2016
  • Concrete-filled double skin steel tube (CFDST) beam-columns are widely used in industrial plants, subways, high-rise buildings and arch bridges. The CFDST columns have the same advantages as traditional CFT members. Moreover, they have lighter weight, higher bending stiffness, better cyclic performance, and have higher fire resistance capacities than their CFT counterparts. The scope of this study is to develop finite element models that can predict accepted capacities of double skin concrete-filled tube columns under the combined effect of axial and bending actions. The analysis results were studied to determine the distribution of stresses among the different components and the effect of the concrete core on the outer and inner steel tube. The developed models are first verified against the available experimental data. Accordingly, an extensive parametric study was performed considering different key factors including load eccentricity, slenderness ratio, concrete compressive strength, and steel tube yield strength. The results of the performed parametric study are intended to supplement the experimental research and examine the accuracy of the available design formulas.

Use of Super Elements and Substructures for Three Dimensional Analysis of the Box System with Openings (개구부가 있는 벽식구조물의 3차원해석을 위한 슈퍼요소와 부분구조의 이용)

  • 이동근;김현수;남궁계홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.3-10
    • /
    • 2001
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take tremendous amount of computational time and memory if the entire building structure is subdivided into a finer mesh . An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study, The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Seismic Isolation Systems Incorporating with RC Core Walls and Precast Concrete Perimeter Frames -Shimizu Corporation Tokyo Headquarter-

  • Shimazaki, Dai;Nakagawa, Kentaro
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Shimizu Corporation Tokyo Headquarters, one of the city's leading office buildings, features many pioneering technologies that contribute to a sustainable society through environmental stewardship and a sophisticated disaster management facility. In terms of structural engineering, a seismic isolation system incorporating reinforced concrete core walls and precast concrete perimeter frames create a robust structure in the event of a large earthquake. In addition to the seismic resistance of the structure, several pioneering construction methods and materials are adopted. This office building can serve as a basis for new design and construction approaches and methodologies to ensure safe and economical structures.

Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls

  • Cho, Chang-Geun;Ha, Gee-Joo;Kim, Yun-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.211-223
    • /
    • 2008
  • A number of studies have suggested that the use of high ductile and high shear materials, such as Engineered Cementitious Composites (ECC) and High Performance Fiber Reinforced Cementitious Composites (HPFRCC), significantly enhances the shear capacity of structural elements, even with/without shear reinforcements. The present study emphasizes the development of a nonlinear model of shear behaviour of a HPFRCC panel for application to the seismic retrofit of reinforced concrete buildings. To model the shear behaviour of HPFRCC panels, the original Modified Compression Field Theory (MCFT) for conventional reinforced concrete panels has been newly revised for reinforced HPFRCC panels, and is referred to here as the HPFRCC-MCFT model. A series of experiments was conducted to assess the shear behaviour of HPFRCC panels subjected to pure shear, and the proposed shear model has been verified through an experiment involving panel elements under pure shear. The proposed shear model of a HPFRCC panel has been applied to the prediction of seismic retrofitted reinforced concrete buildings with in-filled HPFRCC panels. In retrofitted structures, the in-filled HPFRCC element is regarded as a shear spring element of a low-rise shear wall ignoring the flexural response, and reinforced concrete elements for beam or beam-column member are modelled by a finite plastic hinge zone model. An experimental study of reinforced concrete frames with in-filled HPFRCC panels was also carried out and the analysis model was verified with correlation studies of experimental results.

A study on the functional and environmentally friendly concrete (친환경 기능성 콘크리트에 관한 연구 방안)

  • Baek, Jong-Myeong;Seo, Moon-Seog;Lee, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.565-573
    • /
    • 2009
  • Even in case of new materials, materials that are not only harmless for the current global environment but also have high-performance and high-function are sought-after in consideration of the global environmental problems. Moreover, in construction areas where a large amount of cement and concrete are used, the establishment of the recycling technology or transformation into resources and energy materials are being put in place. And also, in a situation where the slow and relaxed city and rural life have a high priority, the need for cement and concrete as environmentally friendly new materials that best suit the emotions in human beings is on the rise and a new way to make good use of cement and concrete as new materials in construction technology should be sought. The recently introduced functional and environmentally friendly concrete is aimed at enhancing health through the adjustments of the body biorhythm using far-infrared. Minerals that contain a great amount of the elements with the frequent occurrence of the infrared among earth minerals and concrete are mixed to use structures or finishing materials, which will tackle the issues of smells, mold and corrosion.

  • PDF

Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method (PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구)

  • Choi, Jong-Moon;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

Corelation of Experimental and Analytical Response of a 1:12 Scale 10-Story Masonry-Infilled R.C. Frame (10층 조적채움 R.C. 골조의 비선형 거동에 대한 해석과 실험의 상관성 연구)

  • 이한선;김정우;김상호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.487-490
    • /
    • 1999
  • Nowadays, the pushover analysis technique is becoming a very useful tool for the prediction of inelastic behavior of structures in the seismic evaluation of existing buildings in the world. However, the reliability of this analysis method has not been fully checked by the test results. The objective of this study is to verify the correlation between the analytical and experimental response of a high-rise masonry infilled reinforced concrete frame using DRAIN-2DX program and the test results performed previously. This study concludes that the strength and stiffness of members can be predicted with quite high reliability while the ductility capacity of members can not be described reasonably.

  • PDF

Nonlinear static and dynamic behavior of reinforced concrete steel-braced frames

  • Eskandari, Reyhaneh;Vafaei, Davoud;Vafaei, Javid;Shemshadian, Mohammad Ebrahim
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • In this paper, the seismic performance of reinforced concrete braced frames (RC-BF) under far- and near-fault motions was investigated. Four-, eight-, 12- and 16-story RC-BFs were designed on the basis of a code-design method for a high risk seismic zone. Nonlinear static and dynamic analyses of the frames have been performed using OpenSees software. To consider diverse characteristics of near-fault motions, records with forward-directivity and fling-step effects were employed. From the results obtained in the analytical study it is concluded that the used design method was reasonable and the mean maximum drift of the frames under all ground motion sets were in acceptable range. For intermediate- and high-rise buildings the near-fault motions imposed higher demands than far-faults.

Haut - A 21-storey Tall Timber Residential Building

  • Verhaegh, Rob;Vola, Mathew;de Jong, Jorn
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2020
  • This paper reflects on the structural design of Haut; a 21-storey high-end residential development in Amsterdam, the Netherlands. Construction started in 2019 and is in progress at the time of writing. Upon completion in 2021, Haut will be the first residential building in the Netherlands to achieve a 'BREEAM-outstanding' classification. The building will reach a height of 73 m, making it the highest timber structure in the Netherlands. It contains some 14.500 ㎡ of predominantly residential functions. It features a hybrid concrete-timber stability system and concrete-timber floor panels. This paper describes the concepts behind the structural design for Haut and will touch upon the main challenges that have arisen from the specific combination of characteristics of the project. The paper describes the design of the stability system and -floor system, the analysis of differential movements between concrete and timber structures and wind vibrations. The paper aims to show how the design team has met these specific challenges by implementing a holistic design approach and integrating market knowledge at an early stage of the design.

Numerical Simulation of Temperature Gradients for the Mass Concrete Foundation Slab of Shanghai Tower

  • Gong, Jian;Cui, Weijiu;Yuan, Yong;Wu, Xiaoping
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • Crack control remains a primary concern for mass concrete structures, where the majority of cracking is caused by temperature changes during the hydration process. One-time pouring is a useful construction method for mass concrete structures. The suitability of this method for constructingon of the Shanghai Tower's mass concrete foundation slab of Shanghai Tower is considered here by a numerical simulation method based on a 6- meter- thick slab. Some of the conclusions, which can be verified by monitoring results conducted during construction, are as follows. The temperature gradient is greater in the vertical direction than in the radial direction, therefore, the vertical temperature gradient should be carefully considered for the purpose of crack control. Moreover, owing to cooling conditions at the surfaces and the cement mortar content of the slab, the temperatures and temperature gradients with respect to time vary according to the position within the slab.