• Title/Summary/Keyword: concrete fracture toughness

Search Result 118, Processing Time 0.025 seconds

An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites (실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.158-170
    • /
    • 1994
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber rekforced silica fume . cement composites and light weight fly ash . cement composites are presented in this paper. 11s the test results show, the flexural strength, fracture toughness and ductility of CF reinforced silica fume . cement composites were remarkably increased by the increase of carbon fiber contents. And the workability of the fly ash . cement composites were improved, but the compressive and flexural strength and bulk specific gravity of them are decreased by increasing the ratio of fly ash to cement. And the compressive and flexural strength of the fly ash cement composites by cured under the hot water were improved than those by mositure cured. Also, the manufacturing process technology of lightweight fly ash . cement composites in replacement of general autoclaved lightweight concrete was developed and its optimum mix proportions were proposed.

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

Analysis of Local Failure Machanism of Fiber Reinforced Concrete by Impact of High-Velocity Projectile (고속비상체 충돌에 대한 섬유보강 콘크리트의 국부파괴 매커니즘 분석)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Jung-Hyun;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.28-29
    • /
    • 2014
  • In this study, flexural strength by fiber reinforced for steel fiber and reinforced polyamide fiber concrete, and concrete fracture properties by improvement of flexural toughness and high-velocity projectile impact were evaluated. As a result, it was confirmed that flexural strength are improved by distribution of stress and suppress of cracks, and the back desquamation of concrete by high-velocity projectile impact is suppressed. In addition, It was observed that the spalling of rear is caused when tension stress is caused as shock wave by high-velocity projectile impact was transferred to the rear and tension stress is suppressed by fiber reinforcement.

  • PDF

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Microstructural behavior and mechanics of nano-modified cementitious materials

  • Archontas, Nikolaos D.;Pantazopoulou, S.J.
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.15-37
    • /
    • 2015
  • Ongoing efforts for improved fracture toughness of engineered cementitious materials address the inherent brittleness of the binding matrix at several different levels of the material's geometric scale through the addition of various types of reinforcing fibers. Crack control is required for crack widths that cover the entire range of the grain size spectrum of the material, and this dictates the requirement of hybrid mixes combining fibers of different size (nano, micro, macro). Use of Carbon Nano-Tubes (CNT) and Carbon Nano-Fibers (CNFs) as additives is meant to extend the crack-control function down to the nanoscale where cracking is believed to initiate. In this paper the implications of enhanced toughness thus attained at the material nanostructure are explored, with reference to the global smeared constitutive properties of the material, through consistent interpretation of the reported experimental evidence regarding the behavior of engineered cementitious products to direct and indirect tension.

An Experimental Study on the Characteristics of Deformation of Repaired Epoxy Resin by Flexural Strength Test (휨시험에 의한 에폭시 균열주입제의 변형특성에 관한 실험적 연구)

  • Kim Jae Sung;Bae Jun Young;Kim Kyung Deok;Kang Suk Pyo;Kawk Ju Ho;Kim Jung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.269-272
    • /
    • 2005
  • Epoxy resins are gradually becoming some of the most important and versatile polymers in modem civil engineering. Because epoxy resins have some unigue properties, such as toughness, versatility of viscosity and curing conditions, good handling characteristics, high adhesive strength, inertness, low shrinkage compared to most other thermo-setting resins and concrete, and resistance to chemicals, they have found many applications in construction castings, repair materials, road or bridge deck pavements, coatings, and as structural or non structural adhesives. In this applications, epoxy resins are widely used for polymer concretes, grouting materials, injection glues, and sealants. In this paper, characteristics of deformation of repair material after repaired have been investigated by viscosity of repair material and the width of crack. It is believed that flexural strength of epoxy resin with low viscosity is high because tensile strength is high and elongation at break is low, fracture energy is low.

  • PDF

An experimental study on the relationship between SFRC and HSC at long-term response. (고강도 콘크리트와 강섬유 보강 콘크리트의 장기거동 특성에 관한 상관관계 연구)

  • Seo Jong-Myeong;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.317-320
    • /
    • 2005
  • In recent years, according to the development of construction technique, the constructions of longer span bridges, taller buildings, deeper offshore structures, and other megastructures are calling for construction materials with increasingly improve properties. So, the demand for high-strength concrete(HSC) have been increased and many new structures have been built using HSC with the compressive strength about 100MPa. However, it is well-known that as the strength of concrete increases, concrete becomes more brittle. Recent studies, however, shown that the brittleness of HSC can be improved by adding some fibers to the concrete. Especially steel fiber reinforced concrete(SFRC) can be used in this case. Many research works have shown that SFRC results in better crack and deflection control, higher shear strength, improved fatigue performance, increased impact strength, reformed flexural strength, advanced fracture toughness and enhanced postcracking resistance. So, this is a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this study, the test results of twenty-six high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of 1 $\%$ by volume were presented. And the results are analyzed by using of the factors of time, mix properties, humidity/temperature, and loading conditions.

  • PDF

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.