• Title/Summary/Keyword: concrete flexural member

Search Result 250, Processing Time 0.024 seconds

An Experiment of Flexural Behavior for the Prestressed Concrete Beams with Partially Bonded External Tendons (외부 부분 부착 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Lee, Sang-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.141-147
    • /
    • 2012
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. The purposes of the present paper are therefore to improve the mechanical behavior of external unbonded tendon by using partially bonded external tendon and to evaluate the flexural behavior of partially bonded external tendon by the flexural member experiment. From the experimental results, before flexural cracking, there was no difference between external unbonded, partially bonded and bonded tendons. However, after cracking, yielding load of reinforcement, ultimate load, and tendon stress were increased in the sequence of external unbonded, partially bonded and bonded tendon members. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations. So the newly proposed equation will be needed including the consideration of tendon profile, tendon bonded type, and so on. The proposed partially bonded external tendon in this paper will be a effective basis for the evaluation of external tendons in construction and design.

Finite Element Analysis of the Flexural Behavior of Concrete Filled Steel Tubes (콘크리트 충전 강관 부재의 휨거동에 관한 유한요소해석)

  • Kang, Jae-Yoon;Choi, Eun-Suk;Chin, Won-Jong;Lee, Jung-Woo;Kim, Byung-Suk;Lee, Heung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.418-421
    • /
    • 2006
  • Appropriate analysis models for concrete-filled steel tube (CFT) subjected to bending moment were determined to assess flexural behavior of CFT member. Applying this model, finite element analyses was performed and compared against experimental data considering the compressive strength of in-filling material and the composite action between tube shell and in-filling core. Analysis results showed that the FE model proposed in this study is feasible for the analytical investigation of the flexural behavior of CFT member according to loading conditions, effect of compressive strength of various core materials and other design parameters.

  • PDF

Cracking in reinforced concrete flexural members - A reliability model

  • Rao, K. Balaji;Rao, T.V.S.R. Appa
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.303-318
    • /
    • 1999
  • Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Structural Characteristics of Concrete Filled GFRP Composite Compression Member (콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성)

  • 이성우;최석환;손기훈;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Flexural Tests on Post-Tensioned Segmental Composite Beam (세그멘탈 합성보의 휨 실험)

  • 김인규;설동재;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.487-492
    • /
    • 2002
  • The interior portion of Gerber's beam are constructed with post-tensioned segmental composite beams in this study. A precast concrete member which is larger than the limits of domestic transportation regulation in weight, length, and volume is divided into three parts, transported separately, and erected with a composite member by post-tensioning in site. Static flexural loading tests are performed on Gerber's type frames which are consisted with 2.5m overhangs and 5m interior beams composited from three pieces. The connection of overhang to interior composite beam and beam to beam, and flexural performance of interior portion of Gerber's beam are examined thoroughly. All of the tests are ended with a compression failure of the interior composite beams over the design strength of homogeneous beams. The brittle connection failures or tensile failures with the failure of lower strand was not observed in any test frames.

  • PDF

Compressive and Flexural Strength Development Characteristics of Polymer Concrete (폴리머 콘크리트의 압축 및 휨강도 발현 특성)

  • Jin, Nan Ji;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.

Evaluation of Strengthening Capacity of Axial Member Using Admixture-Modified Mortar (혼화재 첨가 모르터를 이용한 압축부재의 보강성능 평가)

  • 박준명;양동석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • Strength and Durability of reinforced concrete exposed at deteriorated environment are decreased by cover spatting and corrosion of reinforcement. The purpose of this paper is to evaluate capacity of strengthening axial member using admixture-modified mortar. To investigate the capacity of strengthened axial member, behavior and strength of strengthening specimens were compared with a monolithic basic specimen. Admixture-modified mortar was prepared with silica fume, zeolite, polymer as cement modifier. From the result of this experiment, strengthening specimens using polymer-modified mortar have apparrent strengthening capacity because of good flexural strength and tensile strength.

  • PDF

Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs

  • Han, Sun-Jin;Joo, Hyo-Eun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.691-703
    • /
    • 2021
  • In this study, experiments were conducted to evaluate the flexural performance of prestressed hybrid wide flange (PHWF) beams with hollowed steel webs. A total of four PHWF beams were fabricated, where the width and spacing of the steel webs and the presence of cast-in-place (CIP) concrete were set as the main test parameters, and their flexural behavior and crack patterns, and the longitudinal strain distribution in a section with respect to the width and spacing of the steel webs were analyzed in detail. The experiment results showed that, as the ratio of the width to the spacing of the steel webs decreased, the flexural stiffness and strength of the PHWF beams without CIP concrete decreased. In addition, in the case of composite PHWF beam with CIP concrete, fully composite behavior between the precast concrete and the CIP concrete was achieved through the embedded steel member. Finite element analyses were performed for the PHWF beams considering the bond properties between the hollowed steel webs and concrete, and nonlinear flexural analyses were also conducted reflecting the pre-compressive strains introduced only into the bottom flange. From the comparison of the test and analysis results, it was confirmed that the analysis models proposed in this study well evaluated the flexural behavior of PHWF beams with and without CIP concrete.