• Title/Summary/Keyword: concrete flexural member

Search Result 250, Processing Time 0.029 seconds

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.197-208
    • /
    • 1995
  • The prestressed concrete continuous members with unbonded tendons were investigated while comparing the experimental data with the analytical results. The comparison was carried out with the program TAPS which can take into account the unbonded tendon effects. The subjects that were interested included the load-deflection response, the design equations for the tendon stress at failure, the effects of bonded reinforcements, the effects of span-depth ratio, the effects of loading type. In this paper, contiriuous prestressed concrete members with unbonded ten dons were investigated. Of twelve tests with continuous members, six were two-span beams and six were three span one-way slats. Analytical results were compared favorably with experimental data and disclosed that the tendon stress at flexural failure is the function of the amount of bonded reinforcements, the loading types and patterns, and the tendon profile.

An investigation into the shear strength of SFRC beams with opening in web using NFEM

  • Karimi, Mohammad;Hashemia, Seyed Hamid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.539-546
    • /
    • 2018
  • Making a transverse opening in concrete beams in order to accommodate utility services through the member instead of below or above of that, sometimes may be necessary. It is obvious that inclusions of an opening in a beam decreases its flexural and shear strengths. Fabricated steel bars are usually used to increase the capacity of the opening section, but details of reinforcements around the opening are dense and complex resulting in laborious pouring and setup process. The goal of this study was to investigate the possibility of using steel fibers in concrete mixture instead of complex reinforcement detailing order to strengthen opening section. Nonlinear finite element method was employed to investigate the behavior of steel fiber reinforced concrete beams. The numerical models were validated by comparison with experimental measurements tested by other investigators and then used to study the influence of fiber length, fiber aspect ratio and fiber content on the shear performance of SFRC slender beams with opening. Finally, it was concluded that the predicted shear strength enhancement is considerably influenced by use of steel fibers in concrete mixture but the effect of fiber length and fiber aspect ratio wasn't significant.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Flexural Capacity Evaluation of RC Member Retrofitted by CFS and with Various Damage Level (탄소섬유로 휨보강된 RC 부재의 손상정도에 따른 보유내력평가)

  • Seo, Soo-Yeon;Kim, Kyong-Tae;Yoon, Seung-Joe;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Gi-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.326-329
    • /
    • 2006
  • Strengthening method using CFS have been developed for the rehabilitation of structures. However, it is very difficult to estimate their resistance capacity after retrofit. Therefore, damage information for strengthened structure with CFS investigated and the estimation method structural capacity by using the damage information is developed. The final objective of this research work is to propose the guideline and method for resistance capacity estimate of structure. In this paper, experimental study result with test parameters of number of carbon fiber sheets and bonding ratio is introduced.

  • PDF

An Experimental Study on the Rehabilitation Technics of R/C Flexural Member (철근콘크리트보의 휨내력보강 공법에 관한 실험적 연구)

  • Kim, Sung-Chul;Lee, Hee-Kyoung;Yoo, Seong-Hoon;Kim, Joong-Koo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.715-720
    • /
    • 1997
  • In this study, the behavior of R/C beam strengthened with carbon fiber laminate(C.F.L) is analyzed from the test results. Test parameters ar the width and the thickness of C.F.L. The failure mode and ultimate load are analyzed from these measured data. Test results shows that the peak load of specimens strengthened with C.F.L. is increased to 1.27~2.04 times of that of non-rehabilitation specimen. The wider lap width, large amount of rehabilitation materials, the larger strength is obtained.

  • PDF

A Study on Behavior of materials for Flexural member of Reduced-Scale Models (축소모델 휨부재의 재료거동에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.84-88
    • /
    • 2000
  • The main objectives of this study are to compare the obtained mechanical characteristics of reduced-scale model materials with those of the prototype and to provide the information on the best selection of materials. Manufacturing techniques on the micro-concrete and reduced reinforcement are introduced. The test results of these materials are shown to be satisfactory with regard to the similitude requirement. The simple beam tests were performed to verify similitude in the bond behavior between micro-concrete and reduced reinforcement. Those results also prove that these manufacturing and experimental techniques are useful and reliable for reduced-scale model tests.

  • PDF