• 제목/요약/키워드: concrete filled tube column

검색결과 299건 처리시간 0.021초

내부 구속 중공 CFT 기둥의 비선형 해석 (Nonlinear Analysis of Internally Confined Hollow CFT Columns)

  • 한택희;원덕희;강영종
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.439-454
    • /
    • 2011
  • 내부구속 중공 콘크리트 충전 강관(ICH CFT: Internally Confined Hollow Concrete Filled Tube) 기둥의 비선형 해석모델을 제안하고 기존 연구자의 실험 결과를 이용하여 검증하였다. 제안된 모델은 콘크리트의 구속효과와 재료비선형성을 고려하였다. 검증결과, 제안된 해석 모델은 ICH CFT 기둥의 거동을 예측하는데 합리적이고 신뢰할 수 있는 결과를 보여주었다. 제안된 모델을 이용하여 매개변수 연구를 수행하였으며, 기둥의 거동에 영향을 미치는 주요인자로서 콘크리트의 강도, 중공비, 내부강관의 두께를 매개변수로 선택하였다. 해석결과, 콘크리트 강도와 내부강관의 두께는 기둥의 축강도와 모멘트 저항능력에 큰 영향을 주었으나, 중공비의 변화는 축강도에만 영향을 미치는 결과를 보여주었다.

Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns

  • AL-Eliwi, Baraa J.M.;Ekmekyapar, Talha;Faraj, Radhwan H.;Gogus, M. Tolga;AL-Shaar, Ahmed A.M.
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.299-314
    • /
    • 2017
  • The aim of this paper is to investigate the performance of Lightweight Aggregate Concrete Filled Steel Tube (LWCFST) columns experimentally and compare to the behavior of Self-Compacted Concrete Filled Steel Tube (SCCFST) columns under axial loading. Four different L/D ratios and three D/t ratios were used in the experimental program to delve into the compression behaviours. Compressive strength of the LWC and SCC are 33.47 MPa and 39.71 MPa, respectively. Compressive loading versus end shortening curves and the failure mode of sixteen specimens were compared and discussed. The design specification formulations of AIJ 2001, AISC 360-16, and EC4 were also assessed against test results to underline the performance of specification methods in predicting the compression capacity of LWCFST and SCCFST columns. Based on the behaviour of the SCCFST columns, LWCFST columns exhibited different performances, especially in ductility and failure mode. The nature of the utilized lightweight aggregate led to local buckling mode to be dominant in LWCFST columns, even the long LWCFST specimens suffered from this behaviour. While with the SCCFST specimens the global buckling governed the failure mode of long specimens without any loss in capacity. Considering a wide range of column geometries (short, medium and long columns), this paper extends the current knowledge in composite construction by examining the potential of two promising and innovative structural concrete types in CFST applications.

Structural response of composite concrete filled plastic tubes in compression

  • Oyawa, Walter O.;Gathimba, Naftary K.;Mang'uriu, Geoffrey N.
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.589-604
    • /
    • 2016
  • Kenya has recently experienced worrying collapse of buildings during construction largely attributable to the poor quality of in-situ concrete and poor workmanship. The situation in the country is further compounded by rapid deterioration of infrastructure, hence necessitating the development of alternative structural systems such as concrete filled unplasticized poly vinyl chloride (UPVC) tubes as columns. The work herein adds on to the very limited and scanty work on use of UPVC tubes in construction. This study presents the findings of experimental and analytical work which investigated the structural response of composite concrete filled UPVC tubes under compressive load regime. UPVC pipes are cheaper than steel tubes and can be used as formwork during construction and thereafter as an integral part of column. Key variables in this study included the strength of infill concrete, the length to diameter ratio (L/D) of the plastic tube, as well as the diameter to thickness ratio (D/2t) of the plastic tube. Plastic tubes having varying diameters and heights were used to confine concrete of different strengths. Results obtained in the study clearly demonstrate the effectiveness of UPVC tubes as a confining medium for infill concrete, attributable to enhanced composite interaction between the UPVC tube and infill concrete medium. It was determined that compressive strength of the composite column specimens increased with increased concrete strength while the same decreased with increased column height, albeit by a small margin since all the columns considered were short columns. Most importantly, the experimental confined concrete strength increased significantly when compared to unconfined concrete strength; the strength increased between 1.18 to 3.65 times the unconfined strength. It was noted that lower strength infill concrete had the highest confined strength possibly due to enhanced composite interaction with the confining UPVC tube. The study further proposes an analytical model for the determination of confined strength of concrete.

무다짐 콘크리트를 이용한 높은 40m CFT 기둥의 시공 (Practical Use of Self Compacting Concrete to be filled inside the Steel Tube Columns)

  • 김규동;김한준;손유신;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1023-1028
    • /
    • 2003
  • The structure of Tower Palace III Sports Center building was designed as concrete Filled Steel Tube(CFT) Column and the filled-in concrete was designed as high compressive strength of 500kgf/$m_2$. The self compacting concrete(SCC, non-vibrating concrete) with 65$\pm$5cm flow must be applied to this case for filling the CFT by injecting the concrete from the column bottom. Laboratory tests and pilot productions of batcher plant were performed for optimum mix design and the full scale Mock-Up test was performed to check the appicability of the construction method. As a result, we observed that good quality SCC and the pressure change of concrete pump normally used domestically. Based on these results, we have constructed 20-40m height CFT columns successfully.

  • PDF

콘크리트 충전 각형 강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (A Experimental study about an effect of shear-connector at a bond stress in concrete filled rectangular tubular column)

  • 박성무;김성수;김원호;이형석;이경섭;송준근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.561-566
    • /
    • 2001
  • Load at steel beam column joints transfered by beam depend on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for transfering loads efficiently. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector

  • PDF

콘크리트 충전원형강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (An experimental study about an effect of shear-connector at a bond stress in concrete filled circular steel tubular column)

  • 박성무;김성수;김원호;이형석;이우진;김경모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2001
  • A transmission of load that is transmitted by beam in steel beam-column joint depends on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for a reinforcement about a transmission of load. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Confining effect of concrete in double-skinned composite tubular columns

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung-Hwa;Kang, Young-Jong
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.613-633
    • /
    • 2014
  • A double-skinned composite tubular (DSCT) column, which consists of concrete and inner and outer tubes, was finally developed to overcome the weaknesses of concrete filled tube columns by reducing the self-weight of the column and confining the concrete triaxially. Research pertaining to the stiffness and strength of the column and the confining effect in a DSCT column has been carried out. However, detailed studies on the confining stress, especially the internal confining stress in a DSCT column, have not been carried out. Internal and external confining stresses should be evaluated to determine the effective confining stress in a DSCT column. In this paper, the confining stresses of concrete before and after insertion of an inner tube were studied using finite element analysis. The relationship between the internal or external confining stresses and the theoretical confining stress was investigated by parametric studies. New modified formulae for the yield and buckling failure conditions based on the formulae suggested by former researchers were proposed. Through analytical studies, the modified formulae were verified to be effective for economic and reasonable design of the inner tubes in a DSCT column under the same confining stress.

비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구 (A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating)

  • 김규용;이형준;이태규;김영선;강선종
    • 한국화재소방학회논문지
    • /
    • 제23권3호
    • /
    • pp.31-39
    • /
    • 2009
  • 최근 고층건물의 화재안전성에 대한 문제점이 사회적으로 부각되어지고 있으며, 이러한 고층 건물에 다수 사용되고 있는 CFT기둥 부재에 대한 내화성능을 정량적으로 평가하는 방법이나 기준들이 마련되지 않은 상황이다. 이에 본 연구에서는 고강도 콘크리트를 충전한 CFT 단주를 제작하여 내화실험을 실시하고, 화재시 내화성능평가 및 비정상온도분포해석을 이용한 해석을 수행하여 온도분포해석의 모델링을 제안할 수 있었다. 이것을 기초로 CFT Stub Column의 고온특성 평가결과를 활용하여 화재시 내화시간에 따른 CFT기둥의 잔존내력 예측식을 유도할 수 있었다.

CFT구조용 초고강도 콘크리트의 현장 적용을 위한 실험적 연구 (An Experimental Study on High Strength Concrete for Concrete Filled Steel Tube Column for Field Application)

  • 이장환;김영주;정광식;강태경;정근호;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.454-457
    • /
    • 2004
  • Due to social problems such as the increasing of land price and the expanding of city, buildings require more complex and bigger components and structure. However, the complex and massive building projects need new technology to solve effect of local buckling and the needs for more space. Hence, Concrete Filled Tube Steel (CFT), the tube steel to hold concrete during pouring and curing of concrete procedure, which helps to reduce local buckling and space, was developed. Most researches on CFT might not be focused on the characteristic of concrete 'filled in tube but structural analysis. However, it is the essential factor to increase the strength of concrete on CFT for having efficient results. Therefore, this paper will describe how to apply CFT into the construction site through examining High Strength Concrete $(800kg/cm^2)$, the strength of core, and bleeding during pouring strategy.

  • PDF