• 제목/요약/키워드: concrete filled tube column

검색결과 299건 처리시간 0.025초

CFT 기둥의 장기거동 특성에 관한 연구 (The Long-term Behavior of CFT-Column)

  • 권승희;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.579-582
    • /
    • 1999
  • This paper represents the results of experiments designed to investigate the time-dependent response of concrete and steel tube in circular concrete-filled steel tubes, as are deployed extensively in high-rise building construction. The experiments were performed for creep of concrete and CFT column specimens with three loading cases. The creep coefficient and specific creep(unit creep) obtained from the test results were used for estimating and comparing the time-dependent response of each case. From these analyses, it is show that CFT-column has many merits for long-term behavior.

  • PDF

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

다이어프램 선 조립 ㄷ형태 기둥을 이용한 CFT내진보강공법 (CFT seismic reinforcement method using diaphragm pre-assembled ㄷ-shaped column)

  • 우종열;신승훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2022
  • When reinforcing an existing building with the Concrete Filled Tube(CFT) structure, it is impossible to form a diaphragm inside with the existing method. Therefore, in this study, a construction method was proposed so that the internal diaphragm could be welded on four sides by using a slot to transmit force.

  • PDF

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

중심축하중을 받는 콘크리트충전 각형강관단주의 내력 (Strength of Axially Loaded Concrete-Filled Tubular Stub Column.)

  • 강창훈;오영석;문태섭
    • 한국강구조학회 논문집
    • /
    • 제13권3호
    • /
    • pp.279-287
    • /
    • 2001
  • 본 논문은 중심축하중을 받는 콘크리트충전 각형강관 단주의 거동에 관한 연구이다. 총 11개의 실험체가 실험되었고, 실험의 변수는 강관의 폭/두께비와 강재의 항복 응력도에 대한 콘크리트의 압축강도비(응력도비)이다. 폭/두께비의 범위는 20.22에서 91.75이고 응력도비는 0.068에서 0.0955이다. 본 실험의 변수범위를 초과하는 기존의 실험결과를 수집하고 변수의 범위를 확장하여, 각각의 변수가 미치는 영향을 고찰하였다. 또한, Hajjar가 제안한 다항식의 모델을 수정하여 콘크리트충전 각형강관 단주의 내력식을 제안하였고.

  • PDF

2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동 (Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections)

  • 오헌근;김선희;박찬면;최성모
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.

Shear transfer mechanisms in composite columns: an experimental study

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.377-390
    • /
    • 2007
  • In the design of concrete filled composite columns, it is assumed that the load transfer between the steel tube and concrete core has to be achieved by the natural bond. However, it is important to investigate the mechanisms of shear transfer due to the possibility of steel-concrete interface separation. This paper deals with the contribution of headed stud bolt shear connectors and angles to improve the shear resistance of the steel-concrete interface using push-out tests. In order to determine the influence of the shear connectors, altogether three specimens of concrete filled composite column were tested: one without mechanical shear connectors, one with four stud bolt shear connectors and one with four angles. The experimental results showed the mechanisms of shear transfer and also the contribution of the angles and stud bolts to the shear resistance and the force transfer capacity.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines

  • Shariati, Mahdi;Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Toghroli, Ali;Tabarestani, Nima Pahlavannejad
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.377-391
    • /
    • 2020
  • A concrete filled steel tube (CFT) column with stiffeners has preferable behavior subjected to axial loading condition due to delay local buckling of the steel wall than traditional CFT columns without stiffeners. Welding lines in welded built-up steel box columns is expected to behave as longitudinal stiffeners. This study has presented a numerical investigation into the behavior of built-up concrete filled steel tube columns under axial pressure. At first stage, a finite element model (FE) has been built to simulate the behavior of built-up CFT columns. Comparing the results of FE and test has shown that numerical model passes the desired conditions and could accurately predict the axial performance of CFT column. Also, by the raise of steel tube thickness, the load bearing capacity of columns has been increased due to higher confinement effect. Also, the raise of concrete strength with greater cross section is led to a higher load bearing capacity compared to the steel tube thickness increment. In CFT columns with greater cross section, concrete strength has a higher influence on load bearing capacity which is noticeable in columns with more welding lines.