• Title/Summary/Keyword: concrete encased steel

Search Result 118, Processing Time 0.022 seconds

An Experimental study on Evaluation of Compressive Strength For Encased-Concrete Corrugated Steel Plate (콘크리트 충전 브릿지 플레이트의 압축강도에 대한 실험적 연구)

  • Sim, Jong-Sung;Lee, Eun-Ho;Park, Sung-Jae;Kim, Hyun-Joong;Kim, Tae-Soo;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.55-56
    • /
    • 2009
  • We tried to examine the compression characteristics of connection parts, under the consideration of the construction ability and the connection characteristics by compressive strength which may occur during construction.

  • PDF

Evaluation of the Flexural Behavior of Composite Beam with Tunnel Steel Rib Support Using Circular Concrete Filled Steel Tube (콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가)

  • Ma, Sang Joon;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The purpose of this study is to evaluate the strength and behavior of the composite member in case of concrete filled steel tube embedded in concrete for application concrete filled steel tube to steel rib support in tunnel. A total of six beam specimens were prepared for steel tube in-filled with plain concrete and aerated concrete, and static bending tests were performed. As a result, the member of concrete steel tube embedded with plain concrete showed higher strength than those with aerated concrete. However, it was found that the flexural strength of member with reinforcing bar around the steel tube is more influenced by the amount of the reinforcing bar than the type of the filled concrete.

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Axial compressive behavior of partially encased recycled aggregate concrete stub columns after exposure to high temperatures

  • Jiongfeng Liang;Wanjie Zou;Liuhaoxiang Wang;Wei Li
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.121-134
    • /
    • 2024
  • To investigate the compressive behavior of partially encased recycled aggregate concrete (PERAC) stub columns after exposed to elevated temperatures, 22 specimens were tested. The maximum temperature suffered, the replacement ratio of recycled coarse aggregate (RCA), the endurance time and the spacing between links were considered as the main parameters. It was found that the failure mode of post-heated PERAC columns generally matched that of traditional partially encased composite (PEC) columns, but the flange of specimens appeared premature buckling after undergoing the temperature of 400℃ and above. Additionally, the ultimate strength and ductility of the specimens deteriorated with the elevated temperatures and extended heating time. When 400℃< T ≤ 600℃, the strength reduction range is the largest, about 11% ~ 17%. The higher the replacement ratio of RCA, the lower the ultimate strength of specimens. At the temperature of 600℃, the ultimate strength of specimens with the RCA replacement ratio of 50% and 100% is 0.94 and 0.91 times than that of specimens without RCA, respectively. But the specimen with 50% replacement ratio of RCA showed the best ductility performance. And the bearing capacity and ductility of PERAC stub columns were changed for the better due to the application of links. When the RCA replacement ratio is 100%, the ultimate strength of specimens with the link spacing of 100 mm and 50 mm increased 14% and 25% than that of the specimen without links, respectively. Based on the results above, a formula for calculating the ultimate strength of PERAC stub columns after exposure to high temperatures was proposed.

Fire design of concrete encased columns: Validation of an advanced calculation model

  • Zaharia, R.;Dubina, D.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.835-850
    • /
    • 2014
  • The fire resistance of composite steel and concrete structures may be determined by using the simplified methods provided in EN 1994-1-2. For the particular situations not covered by the standard, an advanced calculation model might be applied, using special purpose programs for the analysis of structures in fire. The validation of these programs has always been an important issue for software developers, but also for designers and authorities. Clause 4.4.4 from EN 1994-1-2 refers to the validation of the advanced calculation models and states that these models must be validated through relevant test results. The paper presents the calculation of fire resistance of the composite columns in a high-rise building built in Romania, and focusses on the validation of the calculation model (computer program SAFIR), for this particular case. This validation, asked by the Romanian authorities, considers the available experimental results of a fire test, performed on a similar composite steel-concrete column.

An Experimental Study on Flexural Strength of Inverted T-shaped Composite Beams encased with concrete (매립형 역T형 합성보의 휨내력에 관한 실험적 연구)

  • Jang, Hee-Sung;Jeong, Jae-Hun;Kim, Jin- Moo;Joo, Kyong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.145-152
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section is usually located near the top flange of the steel H-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. However, It is not easy for inverted T-shaped composite beam to construct and to apply continuous beam which has negative bending moment. As a result, it would get more workability and decrease capability of lateral buckling and local buckling, if the bottom flange of inverted T-shaped steel used as a form. Therefore. the objectives of this study are to investigate strength and behaviors of inverted T-shaped composite beam which web is encased by concrete and to grasp bending capacity and efficiency of composite by comparing and analyzing in test piece.

  • PDF

Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns (합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안)

  • Park, Kuk Dong;Hwang, Won Sub;Yoon, Hee Taek;Sun, Woo Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.265-275
    • /
    • 2010
  • Concrete filled steel tube and concrete encased steel tube columns are expected to have confined effects of concrete by steel and reinforced effects of local buckling by concrete. On the basis of confined state concrete models of previous researches, stress-strain and load-displacement relations of RC, CFT and CET columns are analyzed by steel ratio. After comparing analysis results with experimental results, Modified stress-strain relations are derived through evaluation the influence upon confined effects of concrete in each cases. Also, the modified stress-strain models are carried out to be compared with specified strength of various countries.

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Experimental study on shear performance of partially precast Castellated Steel Reinforced Concrete (CPSRC) beams

  • Yang, Yong;Yu, Yunlong;Guo, Yuxiang;Roeder, Charles W.;Xue, Yicong;Shao, Yongjian
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.289-302
    • /
    • 2016
  • A new kind of partially precast or prefabricated castellated steel reinforced concrete beam, which is abbreviated here as CPSRC beam, was presented and introduced in this paper. This kind of CPSRC beam is composed of a precast outer-part and a cast-in-place inner-part. The precast outer-part is composed of an encased castellated steel shape, reinforcement bars and high performance concrete. The cast-in-place inner-part is made of common strength concrete, and is casted with the floor slabs simultaneously. In order to investigate the shear performance of the CPSRC beam, experiments of six CPSRC T-beam specimens, together with experiments of one cast-in-place SRC control T-beam specimen were conducted. All the specimens were subjected to sagging bending moment (or positive moment). In the tests, the influence of casting different strength of concrete in the cross section on the shear performance of the PPSRC beam was firstly emphasized, and the effect of the shear span-to-depth ratio on that were also especially taken into account too. During the tests, the shear force-deflection curves were recorded, while the strains of concrete, the steel shapes as well as the reinforcement stirrups at the shear zone of the specimens were also measured, and the crack propagation pattern together with the failure pattern was as well observed in detail. Based on the test results, the shear failure mechanism was clearly revealed, and the effect of the concrete strength and shear span-to-depth ratios were investigated. The shear capacity of such kind of CPSRC was furthermore discussed, and the influences of the holes on the steel shape on the shear performance were particularly analyzed.