• Title/Summary/Keyword: concrete deck of bridge

Search Result 463, Processing Time 0.223 seconds

Impact Factor for Safety Evaluation of Highway Bridges (도로교의 간이 내하력평가를 위한 충격계수의 산출)

  • 정철헌;김영진;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.109-116
    • /
    • 1995
  • In tnis study, the impact factors of a simply supported highway bridge due to a vehicle moving across the span are presented. This variable has received cons~derable attention in recent years, both analytically and experimentally. The KBDC specification equation has a maximum 30 percent value which decreases with span length. The results of field tests showed that the dynamic load effects are mostly lower t.hari present KBDC value and that the impact factor does not vary significantly with spar1 as implied in KHUC. The rnain parameters affecting lmpact are the br dge approach. bumps, and other pavement roughness. In thls study, based on test results, three values of impact factors are provided by correlating the roughness of the surface to the deck condition survey values. The present study proposes reasonable impact factors for the strength evaluation of highway bridges. This study may be extended to the evaluation of existing brdges.

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

Durability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 내구특성)

  • Yun, Kyong-Ku;Jung, Won-Kyong;Choi, Sang-Reung;Kim, Dong-Ho;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.1-8
    • /
    • 2002
  • Latex modified concrete(LMC) became to be applied as a new material for newly constructed bridge deck overlays in Korea due to its excellent bond strength, flexural strength and impermeability against water and chloride. However, it could not be adopted at repair job site because of its long curing time required. Thus, a research on latex modified concrete with rapid-setting cement(RSLMC) is necessary if it could develope the sufficient strength for early opening to traffic. This study focused on the durability of latex modified concrete with rapid-setting cement mainly on water permeable resistance and freeze-thaw resistance. The main experimental variables were latex contents(0, 5, 10, 15 and 20%) and antifoamer contents (0, 1.6, 3.2, 4.8 and 6.4%). Test results show that the permeability of RSLMC is very low indicating below 100 coulombs at 15% of latex contents at all antifoamer contents. The freeze-thaw resistance of RSLMC maintains above 90% of relative dynamic modulus at 3.2% of antifoamer content until 300 freezing-thawing cycles.

  • PDF

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Latex Contents (라텍스함량 변화에 따른 VES-LMC의 자기수축)

  • Park, Won-Il;Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1059-1065
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed for the purpose of fast-track overlay of a concrete bridge deck under heavy traffic, concentrated on the workability, durability, and strength gain so that it can be opened to the traffic only three hours after its placement. The mixture of VES-LMC might accompany very high heat of hydration at early-age because of its inherent rapid hardening property and could have susceptibility to autogenous shrinkage because of its relatively low water-cement ratio. This study evaluated the effect of the latex-cement ratio(L/C) both of the constant and variable slumps on the autogenous shrinkage of VES-LMC by carrying out simple temperature rise test and early-age shrinkage experiment. Test results are as follows: The latex contributes on the enhancement of the concrete durability but has little effect on its hydration and the accompanied heat of hydration in VES-LMC. Autogenous shrinkage increased with the increase in latex-cement ratio at variable slumps and its pattern followed regularly a logarithmic increase. However, the influence of water-cement ratio and latex-cement ratios for the test specimens at constant slump on early-age autogenous shrinkage property was found to be minor due to the simultaneous effect of the two experimental variables.

An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork (영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.92-103
    • /
    • 2015
  • Development of new concrete bridge deck system with FRP plank using as a permanent formwork and the main tensile reinforcement recently has been actively conducted. Concurrent use as a reinforcing material and a permanent formwork, it is possible to reduce the construction time and construction costs than the usual concrete slab. In this study, an experiment was carried out for the bond stress between cast-in-place concrete and the type of FRP plank using as a permanent formwork. The interfacial fracture energy that can be one of the most important parameters were evaluated for adhesion performance and bond stress to know the characteristics of the failure mechanism of the adhesion surface. Interfacial fracture energy of normal concrete is 0.24kN/m of GF11 case, in the case of GF21, 0.43kN/m appears, in the case of CF11 and GF31, 0.44kN/m and 0.46kN/m respectively it appeared. In case of RFCON, 0.52kN/m appears from GF12, the CF12 and GF22, 0.51kN/m and 0.36kN/m appeared each case.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Design of longitudinal prestress of precast decks in twin-girder continuous composite bridges (2거더 연속강합성 교량의 프리캐스트 바닥판 종방향 프리스트레스 설계)

  • Shim, Chang Su;Kim, Hyun Ho;Ha, Tae Yul;Jeon, Seung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.633-642
    • /
    • 2006
  • Serviceability design is required to control the cracking at the joint of precast decks with longitudinal prestress in continuous composite bridges. Details of twin-girder bridges are especially complex not only due to their main reinforcements and transverse prestresses for the design of long-span concrete slabs, but also due to the shear pockets for obtaining the composite action. This paper suggests the design guidelines for the magnitude of the effective prestress and for the selection of filling materials and their requirements that would allow for the use of precast decks for twin-girder continuous composite bridges. The necessary initial prestress was also evaluated through long-term behavior analysis. From the analysis, existing design examples were revised and their effectiveness was estimated. When a filling material with a bonding strength higher than the requirement is used in the region of a high negative moment, a uniform configuration of the longitudinal prestressing steels along thewhole span length of continuous composite bridges can be achieved, which would result in the simplification of the details and the reduction of the construction costs.