• Title/Summary/Keyword: concrete cutting

Search Result 136, Processing Time 0.023 seconds

Concrete plug cutting using abrasive waterjet in the disposal research tunnel (연마재 워터젯을 활용한 처분터널 내 콘크리트 플러그 절삭)

  • Cha, Yohan;Kim, Geon Young;Hong, Eun-Soo;Jun, Hyung-Woo;Lee, Hang-Lo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.153-170
    • /
    • 2022
  • Waterjet has been comprehensively used in urban areas owing to a suitable technique for cutting concrete and rock, and low noise and vibration. Recently, the abrasive waterjet technique has been adopted and applied by the Korea Atomic Energy Research Institute to demolish concrete plugging without disturbing and damaging In-situ Demonstration of Engineered Barrier System in the disposal research tunnel. In this study, the use of abrasive waterjet in the tunnel was evaluated for practical applicability and the existing cutting model was compared with the experimental results. As a variable for waterjet cutting, multi-cutting, water flow rate, abrasive flow rate, and standoff distance were selected for the diversity of analysis. As regarding the practical application, the waterjet facilitated path selection for cutting the concrete plugging and prevented additional disturbances in the periphery. The pump's noise at idling was 64.9 dB which is satisfied with the noise regulatory standard, but it exceeded the standard at ejection to air and target concrete because the experiment was performed in the tunnel space. The experimental result showed that the error between the predicted and measured cutting volume was 12~13% for the first cut and 16% for second cut. The standoff distance had a significant influence on the cutting depth and width, and the error tended to decrease with decrement of standoff distance.

An ExperimentalStudy in Efficiency of Repair for Cutting Area (결손 시험체의 보수 성능에 관한 실험적 연구)

  • 이영도;백민수;최응규;김영회;정상진;최문식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.585-591
    • /
    • 1997
  • The purpose of this experiment is to verify and efficiency of repair for cutting area. The result of this experiment is the fact thar the strength of compression and bending in declined by width and depth of cutting area. Deterioration of strength depends on depth to be repair area the strength of compression decreased up 50% when the repairing area is the fact that it is emerged by the increased of depth size rather than width size.

  • PDF

A Basic Study of Automatic Rebar Length Estimate Algorithm of Columns by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 기둥 철근길이 자동 산정 기초 연구)

  • Oh, Jin-Hyuk;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.21-22
    • /
    • 2023
  • In reinforced concrete constructions, reinforcing bar generates more CO2 per unit weight than other construction materials. In particular, cutting and bending rebar is the main source of rebar waste in the construction industry. Rebar-cutting waste is inevitable during the construction of a reinforced concrete structure since the rebar is not manufactured as designed. Large amounts of waste can be avoided by utilizing optimal cutting patterns and schedules. This research provides a fundamental analysis of the automatic calculation of column rebar length using BIM-based shape codes to minimize cutting waste to near zero. By employing this approach in practice, it is possible to minimize the rate of rebar-cutting waste, reduce costs, shorten construction duration, and reduce CO2 emissions. In addition, the development of this research will serve as a clue for the development of BIM-based rebar layout automation algorithms.

  • PDF

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

The Effect of the Flame Cutting of a Tendon on the Surrounding Concrete in Pretensioned Prestressed Member (용접 절단에 의한 긴장력 도입 방법이 프리텐션 부재의 콘크리트 응력에 미치는 영향 분석)

  • Kim, Jang-Ho;Moon, Do-Young;Zi, Goang-Seup;Kim, Gyu-Seon;Park, Kyoung-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.368-373
    • /
    • 2008
  • This paper describes the dynamic shock effects on the pretensioned concrete member by the detensioning using finite element analysis. The investigation was performed by linear and nonlinear dynamic analysis. In nonlinear dynamic analysis, Brittle Cracking Model was applied for concrete behavior. It was shown that the amplitude of stress wave was significantly decreased when time for cutting of tendon was above 0.05sec. The maximum stress values obtained from linear and nonlinear dynamic analysis was nearly same. However, the position forthe maximum tensile stresses were different.

  • PDF

Dynamic Behavior of Pretensioned Prestressed Members for Releasing Methods (긴장력 도입 방법에 따른 프리텐션 부재 단부의 동적 거동에 관한 연구)

  • Lee, Seung-Jung;Zi, Goang-Seup;Moon, Do-Young;Kim, Kyu-Sun;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.139-140
    • /
    • 2009
  • In this paper, the dynamic behavior of pretensioned concrete structures was investigated experimentally during detensioning for two different releasing methods: flame-cutting and hydraulic-jacking. According to the experimental results of strain changes, although detensioning time of hydraulic-jacking is shorter than that of fame-cutting, the prestressing force loss of fame-cutting is larger than that of hydraulic-jacking.

  • PDF

Effect of Cutting Off Tension Bars in R/C Beams On the Full Scale and Model Specimens (철근콘트리트 보에서 체단된 철근의 효과에 관한 연구 실물 및 축소모형실험을 중심으로)

  • 이리형;최창식;임재형
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.1
    • /
    • pp.79-90
    • /
    • 1990
  • The purpose of this paper is to study on the effect of cutting off tension bars in reinforced concrete beams. that is, the ultimate strength, the failure mode and thl} tension stress distribution through the span. To achieve this purpose, a full-scale frame and seven small scale model beams (five rectangular and two T-section beams) were tested. The four main model specimens and two speciml}ns without cutting off tension bars 1,'{ere analyzed as plane stmss element with package program ADINA. As a result of test and analysis, the shorter' distance bet ween the reaction point and the cutting off point, the higher the ultimate strength of a bl}am will be when other physical properties are equal.

Slip Failure Strength of Infilled Concrete with Reinforced PHC Pile by One-Cutting Method (원커팅 철근보강 PHC 말뚝의 속채움 콘크리트 부착파괴 성능)

  • Chun, Young-Soo;Sim, Young-Jong;Park, Jong-Bae
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.553-558
    • /
    • 2011
  • Existing method protruding strands that are embedded in PHC pile to connect pile head and foundation slab shows poor constructibility. As this causes crack and damage in pile head and casualties often occurs in construction site during the work, alternative method called one-cutting method, in which pile above the ground surface and strands embedded in pile are completely cut and pile head is reinforced with rebar for connection with foundation slab, is currently adopted. However, the capacity of details for these methods are not mechanically proved. In this study, in order to suggest proper details of reinforcement for one-cutting method, failures due to lack of shear resistance between infilled concrete and PHC pile are analyzed through experiments and embedded depth with infilled concrete inside PHC pile is suggested. Assuming that slip failure strength is 0.4MPa, which is obtained from experiment conservatively, to have rebar yielded before slip failure, minimum depth of infilled concrete for PHC 450 and PHC 500, need to be 600mm above, and for PHC 600, 1,000mm above.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

A Study on Technology of Waterproofing of the Concrete Structure Which Used Soft FRP Resin and Square Groove Cutting Technique (연질 FRP 수지와 정방형 홈 컷팅 기술을 이용한 콘크리트 구조물의 방수기술에 관한 연구)

  • Lee, Hyung-Jun;Choi, Sung-Min;Kim, Sung-Sik;Ahn, Sang-Ku;Cho, Ah-Hyung;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.597-600
    • /
    • 2008
  • In this study the reason which researches the feature of the exposure type waterproofing it uses the technique of the soft FRP it uses the soft unsaturated polyester and the square groove cutting technique with respects and solves the interface separate problem because of the rigid FRP it is used with the repairs and retrofit materials it is caused by in adhesion of concrete insufficiency. The feature of this technique was the dispersion and the reinforcement of the fatigue stress due to the integration behavior and the reinforcement due to the glass-fibre of the concrete due to the soft FRP resin and, it investigated the crack appearance confrontation of concrete and the cohesion stability of the concrete due to the square groove cutting technique with importance. The result of research when it applies the soft FRP with the exposure type waterproofing, is judged with the fact that it will be able to expect a bulge resistance confrontation and creak confrontation ability and cohesion stability improvement.

  • PDF