• Title/Summary/Keyword: concrete constitutive model

Search Result 321, Processing Time 0.024 seconds

Mechanical properties and damage constitutive model of self-compacting rubberized concrete

  • Ke, Xiaojun;Xiang, Wannian;Ye, Chunying
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.257-267
    • /
    • 2022
  • Two different types of rubber aggregates (40 mesh rubber powder and 1-4 mm rubber particles respectively) were devised to substitute fine aggregates at 10%, 15%, 20% and 30% by volume in self-compacting concrete to investigate their basic mechanical properties. The results show that with the increase of rubber content, the reduction of compressive strength, splitting tensile strength and static modulus of elasticity gradually increase, and energy dissipation performance gradually increase. The rubber addition significantly reduces brittleness and decelerates damaged process. Whilst, the effect of rubber particles is greater when they are finer. Considering the mechanical properties, the optimal rubber content is 10%. It is recommended that the rubber volume content in rubberized concrete (RC) should not be higher than 20%. In addition, a constitutive model under uniaxial compression was proposed basing on the strain equivalent principle of Lemaitre and the damage theory, which was in good agreement with the test curves.

Integration of the microplane constitutive model into the EPIC code

  • Littlefield, David;Walls, Kenneth C.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.145-158
    • /
    • 2010
  • In this work the implementation of a production-level port of the Microplane constitutive model for concrete into the EPIC code is described. The port follows guidelines outlined in the Material Model Module (MMM) standard used in EPIC to insure a seamless interface with the existing code. Certain features of the model were not implemented using the MMM interface due to compatibility reasons; for example, a separate module was developed to initialize, store and update internal state variables. Objective strain and deformation measures for use in the material model were also implemented into the code. Example calculations were performed and illustrate the veracity of this new implementation.

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

A damage model formulation: unilateral effect and RC structures analysis

  • Pituba, Jose J.C.
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.709-733
    • /
    • 2015
  • This work deals with a damage model formulation taking into account the unilateral effect of the mechanical behaviour of brittle materials such as concrete. The material is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. Two damage tensors governing the stiffness in tension or compression regimes are introduced. A new damage tensor in tension regimes is proposed in order to model the diffuse damage originated in prevails compression regimes. Accordingly with micromechanical theory, the constitutive model is validate when dealing with unilateral effect of brittle materials, Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. The numerical results have shown the good performance of the modelling and its potentialities to simulate practical problems in structural engineering.

Fundamental thermodynamic concepts for the constitutive modeling of damaged concrete

  • Park, Tae-Hyo;Park, Jae-Min;An, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.648-651
    • /
    • 2004
  • Many damage models has been developed to express the degradation of materials. However, only minor damage model for concrete has been developed because of the heterogeneity of it unlike metals. To model the damaged behavior of concrete, this peculiarity as well as a load-induced anisotropic feature must be considered. In this paper, basic concepts of the thermodynamic theory is investigated to model the behavior of the damaged concrete in the phenomenological viewpoint. And the general constitutive relations and damage evolution equations are investigated too.

  • PDF

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료모델과 열거동해석)

  • 강석원;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2001
  • A numerical model for the thermal response analysis of concrete structures is suggested. The model includes the stress-strain relationship, constitutive relationship, and multiaxial failure criteria at elevated temperature conditions. Modified Saenz's model was used to describe the stress-strain relationship at high temperatures. Concrete subjected to elevated temperatures undergoes rapid strain increase and dimensional instability. In order to explain those changes in mechanical properties, a constitutive model of concrete subjected to elevated temperature is proposed. The model consists of four strain components; free thermal creep strain, stress-induced (mechanical) strain, thermal creep strain, and transient strain due to moisture effects. The failure model employs modified Drucker-Prager model in order to describe the temperature dependent multiaxial failure criteria. Some numerical analyses are performed and compared with the experimental results to verify the proposed model. According to the comparison, the suggested material model gives reliable analytical results.

Nonlinear Analysis of Concrete Using K & C Model (K &C 모델을 이용한 콘크리트 비선형 해석)

  • 김영진;김장호;조병완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.409-414
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.

A comprehensive description for damage of concrete subjected to complex loading

  • Meyer, Christian;Peng, Xianghe
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.679-689
    • /
    • 1997
  • The damage of concrete subjected to multiaxial complex loading involves strong anisotropy due to its highly heterogeneous nature and the geometrically anisotropic characteristic of the microcracks. A comprehensive description of concrete damage is proposed by introducing a fourth-order anisotropic damage tenser. The evolution of damage is assumed to be related to the principal components of the current states of stress and damage. The unilateral effect of damage due to the closure and opening of microcracks is taken into account by introducing projection tensors that are also determined by the current state of stress. The proposed damage model considers the different kinds of damage mechanisms that result in different failure modes and different patterns of microdefects that cause different unilateral effects. This damage model is embedded in a thermomechanically consistent constitutive equation in which hardening and the triaxial compression caused shear-enhanced compaction can also be taken into account. The validity of the proposed model is verified by comparing theoretical and experimental results of plain and steel fiber reinforced concrete subjected to complex triaxial stress histories.