• Title/Summary/Keyword: concrete compression struts

Search Result 15, Processing Time 0.019 seconds

An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure (콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

A stress field approach for the shear capacity of RC beams with stirrups

  • Domenico, Dario De;Ricciardi, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.515-527
    • /
    • 2020
  • This paper presents a stress field approach for the shear capacity of stirrup-reinforced concrete beams that explicitly incorporates the contribution of principal tensile stresses in concrete. This formulation represents an extension of the variable strut inclination method adopted in the Eurocode 2. In this model, the stress fields in web concrete consist of principal compressive stresses inclined at an angle θ combined with principal tensile stresses oriented along a direction orthogonal to the former (the latter being typically neglected in other formulations). Three different failure mechanisms are identified, from which the strut inclination angle and the corresponding shear strength are determined through equilibrium principles and the static theorem of limit analysis, similar to the EC-2 approach. It is demonstrated that incorporating the contribution of principal tensile stresses of concrete slightly increases the ultimate inclination angle of the compression struts as well as the shear capacity of reinforced concrete beams. The proposed stress field approach improves the prediction of the shear strength in comparison with the Eurocode 2 model, in terms of both accuracy (mean) and precision (CoV), as demonstrated by a broad comparison with more than 200 published experimental results from the literature.

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

New Flexural Failure Mechanisms for Uniform Compression Stress Fields (균일한 압축장에 대한 새로운 휨 형태의 파괴 매캐니즘)

  • 홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.546-551
    • /
    • 1997
  • New typology of failure mechanisms for uniform compression fields are presented based on the classical theory of plasticity, in particular th normality rule, and the limit theorem. The concrete is assumed as a rigid-perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cut-off. The failure mechanisms are capable of explaining flexural types of crushing failure in uniaxial uniform compression stress fields which are called struts in truss models. The failure mechanisms consist of sliding failure along straight failure lines or hyperbolic failure curves and rigid body rotation. The failure mechanisms involving straight failure lines are explained by constant strain expansion in the first principal direction and rigid body rotation motion. The failure mechanisms presented are applied to the explanation of bond failure of bar combined with concrete crushing failure and flexural crushing failure of concrete.

  • PDF

Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach (비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가)

  • 윤영묵;신용목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

Effect of loading rate on softening behavior of low-rise structural walls

  • Mo, Y.L.;Rothert, H.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.729-741
    • /
    • 1997
  • Cracked reinforced concrete in compression has been observed to exhibit lower strength and stiffness than uniaxially compressed concrete. The so-called compression softening effect responsible is thought to be related to the degree of transverse cracking and straining present. It significantly affects the strength, ductility and load-deformation response of a concrete element. A number of experimental investigations have been undertaken to determine the degree of softening that occurs, and the factors that affect it. At the same time, a number of diverse analytical models have been proposed by various this behavior. In this paper, the softened truss model thoery for low-rise structural shearwalls is employed using the principle of the stress and strain transformations. Using this theory the softening parameters for the concrete struts proposed by Hsu and Belarbi as well as by Vecchio and Collins are examined by 51 test shearwalls available in literature. It is found that the experimental shear strengths and ductilities of the walls under static loads are, in average, very close to the theoretical values; however, the experiment shear strengths and ductilities of the walls under dynamic loads with a low (0.2 Hz) frequency are generally less than the theoretical values.

An Experimental Study on the Shear Behavior of R/C Deep Beems with Web Opentings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동에 대한 실험 연구)

  • 임채문;이진섭;양창현;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.280-285
    • /
    • 1996
  • The shear behavior of reinforced concrete deep beams with web opennings has been scrutinized experimentally to verify the influences of the structural parameters such as size, shape, location and reinfrocements of web openings, and shear span ratio. A total of 22 specimens has been tested under one or two point loading conditions at the laboratory. In the tests most specimens have shown shear failures with inclined cracks from the loacing points to the supports through openings. The ultimate strengths of the specimens measured from the tests have shown wide differences depending on the locations of the openings which deter the formation of the compression struts between the loading points and the supports. The effects of the reinforcements and the geomtry of the openings on the shear strengths and the crack developments have been carefully checked and analyzed.

  • PDF

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.

Estimation Model of Shear Transfer Strength for Uncracked Pull-Off Test Specimens based on Compression Field Theory (비균열 인장재하 시험체의 압축장 이론에 기반한 전단전달강도 산정모델)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • Two different types of shear-friction tests were classified by external loadings and referred to as a push-off and a pull-off test. In a pull-off test, a tension force is applied in the transverse direction of the test specimen to produce a shear stress at the shear plane. This paper presents a method to evaluate shear transfer strengths of uncracked pull-off specimens. The method is based on the compression field theory and different constitutive laws are applied in some ways to gain accurate shear strengths considering softening effects of concrete struts based on Modified Compression Field Theory (MCFT) and Softened Truss Model (STM). The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with the predicted values. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked pull-off test specimens. A shear strength evaluation formula considering the effective compressive strength of a concrete strut was proposed, and the applicability of the proposed formula was verified by comparing with the experimental results in the literature.

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.