• Title/Summary/Keyword: concrete buildings

Search Result 1,501, Processing Time 0.026 seconds

Steel Module-to-Concrete Core Connection Methods in High Rise Modular Buildings: A Critical Review

  • Poudel, Bishal;Lee, Seungtaek;Choi, Jin Ouk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.571-578
    • /
    • 2022
  • Modularization in a high-rise building is different from a small building, as it is exposed to more lateral forces like wind and earthquakes. The integrity, robustness, and overall stability of the modules and their performance is based on the joining techniques and strong structural systems. High lateral stiff construction structures like concrete shear walls and frames, braced steel frames, and steel moment frames are used for the stability of high-rise modular buildings. Similarly, high-rise stick-built buildings have concrete cores and perimeter frames for lateral load strength and stiffness. Methods for general steel-concrete connections are available in many works of literature. However, there are few modular-related papers describing this connection system in modular buildings. This paper aims to review the various research and practice adopted for steel-to-concrete connections in construction and compare the methods between stick-built buildings and modular buildings. The literature review shows that the practice of steel module-to-concrete core connection in high-rise modular buildings is like outrigger beams-to-concrete core connection in stick-built framed buildings. This paper concludes that further studies are needed in developing proper guidelines for a steel module-to-concrete core connection system in high-rise modular buildings.

  • PDF

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

Investigation of the effects on earthquake behavior and rough construction costs of the slab type in reinforced concrete buildings

  • Gursoy, Senol;Uludag, Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.333-343
    • /
    • 2020
  • In the architectural design process, the selection and configuration of the structural system significantly affect the earthquake behaviours of the reinforced concrete buildings. The main purpose of this study, the effects on the earthquake performances and the rough construction cost of the buildings of the slab type in reinforced concrete buildings are to examine comparatively for different local soil classes. The results obtained from this study have been determined that the building model having slabs with beams is safer compared to other types of slabs, especially when considering the vertical bearing structural elements (columns). It also shows that other types of slab, except for slab with beams, reduce the earthquake performances of reinforced concrete buildings, increase the displacement values, 1st natural vibration period values and the cost of rough construction. This matter reveals that slab type is quite important and the preference of beamed slabs in reinforced concrete buildings to be constructed in earthquake zones would be more appropriate in terms of safety and cost.

Equivalent modal damping ratios for non-classically damped hybrid steel concrete buildings with transitional storey

  • Sivandi-Pour, Abbas;Gerami, Mohsen;Khodayarnezhad, Daryush
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.383-401
    • /
    • 2014
  • Over the past years, hybrid building systems, consisting of reinforced concrete frames in bottom and steel frames in top are used as a cost-effective alternative to traditional structural steel or reinforced concrete constructions. Dynamic analysis of hybrid structures is usually a complex procedure due to various dynamic characteristics of each part, i.e. stiffness, mass and especially damping. In hybrid structures, one or more transitional stories with composite sections are used for better transition of lateral and gravity forces. The effect of transitional storey has been considered in no one of the studies in the field of hybrid structures damping. In this study, a method has been proposed to determining the equivalent modal damping ratios for hybrid steel-concrete buildings with transitional storey. In the proposed method, hybrid buildings are considered to have three structural systems, reinforced concrete, composite steel and concrete (transitional storey) and steel system. In this method, hybrid buildings are substituted appropriately with 3-DOF system.

Deformation Demand of the Precast Concrete Frame Buildings with Ductile Connection in Moderate Seismic Regions (연성적인 접합부를 가진 프리캐스트 콘크리트 골조건물의 변형수요)

  • 서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 1999
  • This paper evaluates nonlinear response characteristics of precast concrete frame buildings. where plastics hinging occurs in the precast connection. Designs were developed for buildings of 5, 10 and 15 stories in hight for moderate seismic risk regions of the U. S. The responses of the buildings were analyzed using DRAIN-2DX and following Nonlinear static analysis procedure of ATC 19. The main variables of the analyses were the strength and stiffness of the connection. Also, for the analysis, the bi-linear response model, developed and inserted into the DRAIN-2DX program by Shan Shi and D. Fouch, was used. With the results of analysis, the deformation demands of the connection of precast concrete frame buildings are proposed by using equal-dissipated energy capacity. It was shown that the strength of the buildings as well as their displacement capacities decreased with the decrease of either the strength or stiffness in the connections. Therefore such changes also require reductions in the response modification factors for such buildings. However, if the precast concrete frame building has plastic hinging in the connection, and has a more ductile connection than the monolithic frame building, then no reduction in R may be necessary. The deformation demand required of the connection to achieve that condition is evaluated and a simple relation is suggested in the paper.

Seismic Performance Index of Reinforced Concrete Shear Wall Buildings (철근콘크리트 전단벽식 건물의 내진성능지수)

  • 권영웅`;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • This paper concerns the seismic performance index of highrise reinforced concrete shear wall buildings assessed by FEMA 273 and ATC-40 provisions. The applied buildings are 10 to 35 stories and the evaluation level is life safety level. The seismic performance index results of $1^{st}$ and $2^{nd}$ evaluations are as follows; (equation omitted)

  • PDF

Verification of diaphragm seismic design factors for precast concrete office buildings

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.13-27
    • /
    • 2021
  • A new seismic design methodology has been developed for precast concrete diaphragms. Seismic design factors were used to be applied on top of diaphragm seismic design forces in the current code. These factors, established through extensive parametric studies, align diaphragm design strengths with different seismic performance targets. A simplified evaluation structure with a single-bay plan was used in the parametric studies. This simplified evaluation structure is reasonable and cost-effective as it can comprehensively cover structural geometries and design parameters. However, further verification and investigation are required to apply these design factors to prototype structures with realistic layouts. This paper presents diaphragm design of several precast concrete office buildings using the new design methodology. The applicability of the design factor to the office building was evaluated and verified through nonlinear time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete office buildings. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete office buildings.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Absolute Comparison of Construction Periods between Precast Concrete and Reinforced Concrete Apartment Buildings (PC 및 RC공동주택 골조공사에 대한 공사기간 절대비교)

  • Kim, Ki-Ho;Lee, Bum-Sik;Kim, Jin-Won;Kim, Yeon-Ho;Lee, Dong-Gun;Sohn, Jeong-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.293-294
    • /
    • 2023
  • In accordance with recent changes in construction trends, interest in introducing the OSC, such as the Precast Concrete, is increasing in apartment buildings. In domestic studies, studies on the prediction of the construction period of PC apartment buildings through simulation have been conducted, but there is no study on the comparison of the construction period according to the actual construction of Precast Concrete(PC) and Reinforced Concrete(RC). Therefore, this study seeks to grasp the technology of the current PC construction method and to secure the original technology of project management through comparison of the absolute time of frame construction for PC and RC buildings composed of the same plane.

  • PDF

Design Considerations of Connections in High-Rise P.C. Apartments (고층 P.C 아파트의 접합부 설계)

  • 정하선;김두영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.59-62
    • /
    • 1989
  • Construction of high-rise precast concrete apartment is an atractive alternative solution for severe shortage of residential facilities, especially in metropolitan areas in Korea. New building regulations enforced since 1988 requires all buildings higher than 6 storeys to be designed for earthquake. However, we hardly have any experience on seismic design of precast concrete buildings. This paper deals with methodology of seismic design and design considerations of connections for the large panel structures. Also addressed in this paper are studies needed to develop proper seismic design procedures of precast concrete buildings.

  • PDF