• Title/Summary/Keyword: concrete additives

Search Result 131, Processing Time 0.028 seconds

A Study on the Field Application Porous Concrete Pavement (투수성콘크리트포장의 현장적용에 관한 연구)

  • ;Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.613-619
    • /
    • 1997
  • The present study has an objetive to define the characteristic of the Porous Concrete to be used in the resistant layers of the pavement. Up to the moment there is no material which is capable which is capable of satisfying the mechanical resistances and drainability, two characterstics which interves, and a detailled study has been carried out on the same order to obtain the porous concrete of this study. such as: Mode and time of compaction. type of cement, water/cement ratio, maxium size of aggregates, sieve test. incorporation of some additives and additions etc., among them emphasizing the use of a method of compaction vibro-compression in the laboratory with which an optimum compacting was reached, and can be obtanied on the site with a spreader rated with double tamper. With this porous concrete for this study whose dominating characteristics is the drainability jointly with a high mechanical resistance. a safe and silence firm is obtained, with can be a great diffusion in the near future, for its application on the pavements. Based on these works carried out, there was the first experience in the world of field application with 25cm of resistance layer of Porous Concrete Pavement in Salamanca, Spain.

  • PDF

A Study on Production and Physical Properties of High-Strength Concrete with Blending Additives (혼합재를 사용한 고강도 콘크리트의 제조와 물성에 관한 연구)

  • Jeong, Yong;Shim, Yong-Soo;Kim, Won-Ki;Jaung, Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.15-20
    • /
    • 1991
  • High-strength concrete were produced with super-plasticizer, silica fume, fly ash and blast furnace slag powder. Topics investigated inclued mix proportion, and effects of unit weight of binder, W/C ratio, additive type on the physical properties of high-strength concrete. As the result, at 20% of silica fume, unit weight of binder 700kg/$\textrm{m}^3$ and W/C=0.24, 28days compressive strength of concrete was over 1,000kgf/$\textrm{cm}^2$. And in cases of blending with silica fume 10% and fly ash or slag 10%, it was able to produce economical high-strength concrete with 28 days strength similar to silica fume 20% only, and higher strength after 90days.

  • PDF

A Study on Crack Behavior of Chemically Prestressed Steel Fiber Reinforced Concrete (화학적 프리스트레스가 도입된 강섬유 보강 콘크리트의 균열거동에 대한 연구)

  • Shim, Byul;Kim, Young-Kyun;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, a series of fracture tests are performed for the chemically prestressed steel fiber reinforced concrete (SFRC) manufactured with addition of expansive additives for the study of fracture behavior and characteristics. Cracking loads of the chemically prestressed SFRC are greater than that of normal concrete and those are also increased by increasing of steel fiber volume. Thus, it is necessary to obtain optimum steel fiber volume to induce chemically prestressing effectively to concrete members. The result of three-points bending tests shows that early-cracking resistance of the chemically prestressed SFRC is increased without increase of fracture energy. From the test, the tension softening curves are also obtained by poly-linear approximation method and simulated behaviors by using the determined tension softening curves agree with experimental results. And it is confirmed that cracking and ultimate behaviors of chemically prestressed SFRC can be predicted by using obtained fracture characteristics.

  • PDF

Electrical Impedance Spectroscopy(EIS) Measurements to Evaluate Corrosion of Steel/Concrete System (교류 임피던스기법을 이용한 철근부식 측정에 관한 실험적 연구)

  • Jung, Si-Young;Kim, Byoung-Kook;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.659-662
    • /
    • 2005
  • Electrochemical impedance spectroscopy (EIS) has been extensively used to try to evaluate the corrosion state of the steel/concrete system. This technique is attractive because, in theory, used in a wide range of frequencies, it can give detailed information about the mechanisms and kinetics of the electrochemical reactions. Impedance measurements were performed using potential control and measuring the corresponding current response. One-year-old southern exposure test. specimens were used in the current study. The effectiveness of corrosion inhibiting additives was evaluated. The corrosion current densities estimated by impedance measurements were confirmed by those determined using linear polarization techniques. The purpose of this study was to evaluate the long-term-performance potential of the corrosion inhibitors in chloride contaminated reinforce concrete.

  • PDF

A Study on the Flexural Toughness of Steel Fiber Reinforced Recycled Concrete (강섬유 보강 재생 콘크리트의 휨인성에 관한 연구)

  • Koo, Bong-Kuen;Kim, Tae-Bong;Kim, Chang-Woon;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • Recycled aggregates were generated when concrete structures were dismembered. However, in concrete structures, because of durability, strength and toughness, recycled aggregates don't use generally. This study was done to use recycled aggregate in concrete structures. Problems of durability, strength, and toughness were caused troubles, when recycled aggregates were used, were solved as steel fibers and additives were added. Of course, steel fiber length, steel fiber contents, additive substitution, and recycled aggregate substitution were variables of this study. After flexural specimens($15{\times}15{\times}70cm$) with notch(45mm) were fabricated, basic strength tests were done and toughness was estimated using fracture mechanics parameters. The results suggest that JIC is a promising fracture criterion for all of these, while KIC(or GIC) almost certainly are not.

  • PDF

Prototype Production of Retaining Wall Block using Liquefied Red Mud (액상화 레드머드를 적용한 보강토 블록의 시제품 생산)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.179-180
    • /
    • 2018
  • Color concrete is produced by adding white portland cement and coloring agent. In Korea, colorant added to color concrete is expensive, durability evaluation in external environment is not verified and there is a tendency to avoid color concrete pouring. Red mud with a water content of 50% was prepared in liquid form using appropriate mixing water and additives for recycling as a coloring agent, the liquefied red mud manufactured was intended to show the possibility of using color concrete. In this paper, the application of red mud as an industrial by - product as a coloring agent for color concrete was investigated for the practical use of liquefied red mud by liquefying red mud and producing retaining wall block. As a result, it was found that all of the specifications stipulated in SPS-KCIC0001-0703 are satisfied.

  • PDF

Self-terminated carbonation model as an useful support for durable concrete structure designing

  • Woyciechowski, Piotr P.;Sokolowska, Joanna J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • The paper concerns concrete carbonation, the phenomena that occurs in every type of climate, especially in urban-industrial areas. In European Standards, including Eurocode (EC) for concrete structures the demanded durability of construction located in the conditions of the carbonation threat is mainly assured by the selection of suitable thickness of reinforcement cover. According to EC0 and EC2, the thickness of the cover in the particular class of exposure depends on the structural class/category and concrete compressive strength class which is determined by cement content and water-cement ratio (thus the quantitative composition) but it is not differentiated for various cements, nor additives (i.e., qualitative composition), nor technological types of concrete. As a consequence the selected thickness of concrete cover is in fact a far estimation - sometimes too exaggerated (too safe or too risky). The paper presents the elaborated "self-terminated carbonation model" that includes abovementioned factors and enables to indicate the maximal possible depth of carbonation. This is possible because presented model is a hyperbolic function of carbonation depth in time (the other models published in the literature use the parabolic function that theoretically assume the infinite increase of carbonation depth value). The paper discusses the presented model in comparison to other models published in the literature, moreover it contains the algorithm of concrete cover design with use of the model as well as an example of calculation of the cover thickness.

A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength (콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구)

  • Song Tae Hyeob;Lee Mun Hwan;Lee Sea Hyun;Park Dong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF

Evaluation of Fiber and Blast Furnace Slag Concrete Chloride Penetration through Computer Simulation

  • Kim, Dong-Hun;Petia, Staneva;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • Durability of concrete is an important issue, and one of the most critical aspects affecting durability is chloride diffusivity. Factors such as water.cement ratio, degree of hydration, volume of the aggregates and their particle size distribution have a significant effect on chloride diffusivity in concrete. The use of polypropylene fibers(particularly very fine and well dispersed micro fibers) or mineral additives has been shown to cause a reduction in concrete's permeability. The main objective of this study is to evaluate the manner in which the inclusion of fiber(in terms of volume and size) and blast furnace slag(BFS) (in terms of volume replacement of cement) influence the chloride diffusivity in concrete by applying 3D computer modeling for the composite structure and performing a simulation of the chloride penetration. The modeled parameters, i.e. chloride diffusivity in concrete, are compared to the experimental data obtained in a parallel chloride migration test experiment with the same concrete mixtures. A good agreement of the same order is found between multi.scale microstructure model, and through this chloride diffusivity in concrete was predicted with results similar to those experimentally measured.

Strength and permeability of fiber-reinforced concrete incorporating waste materials

  • Xu, Yun;Xu, Yin;Almuaythir, Sultan;Marzouki, Riadh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.133-152
    • /
    • 2022
  • Ecological issues such as natural resource reduction and enormous waste disposals are increasingly leading in developing civilization toward sustainable construction. The two primary environmental issues are the depletion of natural resources and the disposal of trash in open landfills. Waste steel fiber (WSF) was investigated for usage as a cement-based concrete (CBC) constituent in this research. Recycling waste fibers both makes cement composites more long and cost-effective, also aids in pollution reduction. The objective of this study is to analyze the impacts of waste fiber on the fresh and mechanical features of concrete using recycled additives. A comparative research on the durability and mechanical qualities of fiber-reinforced concrete (FRC) constructed with natural aggregates was conducted for this aim. The obstacles to successful WSF recycling methods application in the building industry have been investigated, resulting that CBCs with these fibers make an economic and long lasting choice to deal with waste materials. The workability of fiber enhanced concrete was found to be comparable to that of normal concrete. Fibers have a considerable impact on the splitting tensile strength, flexural and compressive strength of recycled concrete. Fiber may enhance the water permeability. When the WSF content is 0.6 kg/m3, the water absorption is nearly half. Fibers would have no effect on its permeability.