• Title/Summary/Keyword: concordance learning materials

Search Result 6, Processing Time 0.021 seconds

A Study on the Method of Teaching Korean Synonyms Using Online Corpora (온라인 코퍼스를 활용한 한국어 유의어 교수 방안 연구)

  • 전지은
    • Language Facts and Perspectives
    • /
    • v.47
    • /
    • pp.177-203
    • /
    • 2019
  • The purpose of this study is to suggest the possibility of using online corpora for teaching synonyms in Korean. The research included how to develop the effective concordance learning materials for teaching synonyms in Korean using data driven learning(DDL). Because synonyms are similar in meaning and usage, even native speaker can not clearly explain the difference in synonyms. Furthermore, it is not easy to provide proper example sentences for each word, and it is a reality that the differentiation of the synonyms are not sufficiently provided in the Korean textbooks. In recent years, it has been claimed that DDL helps students produce vocabulary as well as comprehend vocabulary. Nevertheless, it is hard to find how the concordance materials should be made for them. In this study, we extract concordance examples from the various kinds of online corpora; written and spoken corpora, korean textbooks, newspapers. We presented how to make corpus-designed activities using concordance materials for teaching Korean synonyms. In order to examine the effects of DDL, five experimental lessons were given to a group of 15 advanced korean learners in the university and follow-up surveys(attitude-questionnaire) were conducted. This study is meaningful in that it proposed a new teaching method in Korean synonym education.

The Effective Methods of Teaching-learning by the Production of Instructional Media and Its Use - Centered on the Social Science and Natural Science - (교수매체 제작과 그 활용을 통한 학습의 효율화 방안 -과학, 사회과목을 중심으로-)

  • Kim Yong-Chul
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.22
    • /
    • pp.143-177
    • /
    • 1992
  • The main purpose of the school library is to present the various kinds of instructional media for an effective instruction including not only books, but also audiovisual materials and equipments. But unfortunately our school libraries have only books for the students and faculties at this time. But hereafter school library should house the various kinds of audiovisual media as well as printed media for the promotion of scholarstic achivemint. With a view to promoting the teaching method, and at the same time improving the scholarstic achivement of the students, instructional media were used in the class. To verify the efficiency of the instructional media, transparencies were used in the social science class of the 1st grade in the middle school and the natural science class of the 1st grade in the high school. In consequence, the academic achievement of the experimental class in which instructional media were used is superior to that of controlled class in which the textbook was only used. In < Social Science I >, the mean difference between the experimental class and the controlled class is 4.199 marks. And the difference, 0.032 is verified as a significant value in concordance to the t-test. In < Natural Science I >, the mean difference of the experimental class over the controlled class is 6.333. And the difference, 0.034 is verified as a significant value in concordance to the t-test. As shown in the above experimental research, using various kinds of the instructional media is more efficient than using textbook only. As a result of the questionaire on using the instructional media, most of the students desire to use of them continually because the use of the instructional media induce the interest, promote the comprehension, and entice the development of better memories.

  • PDF

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

  • Jung Eun Huh; Jong Hyuk Lee;Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol

  • Chena, Lee;Eun-Gyu, Ha;Yoon Joo, Choi;Kug Jin, Jeon;Sang-Sun, Han
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.393-398
    • /
    • 2022
  • Purpose: This study proposed a generative adversarial network (GAN) model for T2-weighted image (WI) synthesis from proton density (PD)-WI in a temporomandibular joint(TMJ) magnetic resonance imaging (MRI) protocol. Materials and Methods: From January to November 2019, MRI scans for TMJ were reviewed and 308 imaging sets were collected. For training, 277 pairs of PD- and T2-WI sagittal TMJ images were used. Transfer learning of the pix2pix GAN model was utilized to generate T2-WI from PD-WI. Model performance was evaluated with the structural similarity index map (SSIM) and peak signal-to-noise ratio (PSNR) indices for 31 predicted T2-WI (pT2). The disc position was clinically diagnosed as anterior disc displacement with or without reduction, and joint effusion as present or absent. The true T2-WI-based diagnosis was regarded as the gold standard, to which pT2-based diagnoses were compared using Cohen's ĸ coefficient. Results: The mean SSIM and PSNR values were 0.4781(±0.0522) and 21.30(±1.51) dB, respectively. The pT2 protocol showed almost perfect agreement(ĸ=0.81) with the gold standard for disc position. The number of discordant cases was higher for normal disc position (17%) than for anterior displacement with reduction (2%) or without reduction (10%). The effusion diagnosis also showed almost perfect agreement(ĸ=0.88), with higher concordance for the presence (85%) than for the absence (77%) of effusion. Conclusion: The application of pT2 images for a TMJ MRI protocol useful for diagnosis, although the image quality of pT2 was not fully satisfactory. Further research is expected to enhance pT2 quality.

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.