• 제목/요약/키워드: conceptual structures

검색결과 212건 처리시간 0.027초

항공기 복합재 날개구조 전단흐름 해석 (Shear Flow Analysis of Aircraft Composite Wing Structure)

  • 최익현;김성찬;김성준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Traditionally aluminum alloy have been used in manufacturing of aircraft structures, and semi-monocoque structural concept have been mainly applied in structural design of fuselage and wing. However, recently monocoque structural concept is applied in many small-size aircraft structures manufactured with composite materials. In such case appling monocoque structural concept, in initial conceptual design stage on wing, it is not easy to analyze shear flow using classical shear flow analytical method because composite skin structure can support span-wise tension/compression stress as well as sectional shear stress. In this study, an extended shear-flow analytical method to apply to composite monocoque structural concept was developed through extending the classical shear-flow analytical method.

  • PDF

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.573-594
    • /
    • 2001
  • A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계 (Optimal Topoloty Design of Structures and Ribs Using Density Distribution)

  • 정진평;이건우
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • 제7권3호
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

3차원 가상공간에서의 상호작용적 네비게이션 디자인 1부: 기초개념 및 기술 (Interactive Navigation Design in 3-Dimensional Virtual Space Part I: Basic Concepts and Techniques)

  • 김진희
    • 디자인학연구
    • /
    • 제16권3호
    • /
    • pp.71-80
    • /
    • 2003
  • 가상현실 분야는 이제 대중화시대를 맞이하고 있다. 데스크탑 가상현실 산업은 다양한 Web VR 애플리케이션을 중심으로 급속히 성장하고 있는 추세이다. 3차원 가상공간에서 사용자 네비게이션의 수행은 가상의 공간에 설정된 논리적 구조를 인지하고 설정된 상호작용을 이해하며 길을 찾아가는 복잡한 과정이다. 그 것은 사용자가 임으로 설정하는 과정이 아니고 기획단계에서 면밀히 디자인되고 설계된 기술적, 기법적 그리고 개념적 과정인 것이다. 이에 따라 본 논고에서는 3차원 가상공간에서의 상호작용적 네비게이션과 관련된 기술적, 기법적, 그리고 개념적 기초이론들을 총체적으로 고찰하고 있다.

  • PDF

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.

부정 스키마의 의미론적 양상 (Semantic Aspects of Negation as Schema)

  • 태강수
    • 정보처리학회논문지B
    • /
    • 제9B권1호
    • /
    • pp.23-28
    • /
    • 2002
  • 지능형 에이전트를 구현하는데 있어서 하나의 근본적인 문제는 에이전트가 자신의 인식이나 행동의 의미를 이해하지 못한다는 점이다. 에이전트가 세계를 이해하지 못하는 이유중의 하나는 의미론적 자질을 단순한 문자열로 변환시키는 구문론적 접근방법에서 야기한다. 이 문제를 해결하기 위해 코헨은 에이전트가 자율적으로 자신의 센서와 행동자를 사용하여 환경과 상호작용 함으로써 고급 개념의 기초가 되는 물리적 스키마를 배우는 의미론적 방법을 소개한다. 하지만 코헨은 스키마를 이해하는 것을 가능하게 해주는 상위 계층의 개념소자는 다루지 않는다. 본 논문에서는 부정은 물리적 스키마의 인식을 가능하게 해주는 메타 스키마라는 제안을 하고 부정의 몇 가지 의미론적 양상들을 증명한다.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

지식 추상화 계층을 이용한 근사해 생성 (Providing Approximate Answers Using a Knowledge Abstraction Hierarchy)

  • 허순영;문개현
    • Asia pacific journal of information systems
    • /
    • 제8권1호
    • /
    • pp.43-64
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention to the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy(KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance, On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, four types of vague queries are discussed, including approximate selection, approximate join, conceptual selection, and conceptual join. A prototype system has been implemented at KAIST and is being tested with a personnel database system to demonstrate the usefulness and practicality of the knowledge abstraction database in ordinary database application systems.

  • PDF

2점지지계류를 활용한 심해 부유체의 다점지지계류 개념설계 (Conceptual Design of Deep-sea Multi-Point Mooring by using Two-Point Mooring)

  • 박인규;김경무
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.462-467
    • /
    • 2008
  • In this paper, we investigated the design method of mooring system in ultra deep sea and carried out the conceptual design for offshore West Africa oil field in ultra deep sea of 3000 meters. Recently, it was feasible to design and install the offshore floating structures in deep sea of up to 2000 meters. Due to the simplicity, two-point mooring design is fully utilized. Force-excursion curves are throughly examined to find out the feasibility of various combinations of mooring lines. Free length and pretension effects are discussed. It is found that composite materials including synthetic fiber rope may be good solution for ultra deep sea mooring design.