• Title/Summary/Keyword: concentration-compactness

Search Result 32, Processing Time 0.026 seconds

Reactive Dyeing of Photografted para-Aramid Fabrics

  • Kim, Eun-Min;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • para-Aramid has limited dyeability because of its highly crystalline structure and compactness. To improve the dyeability of the para-aramid to reactive dyes of bright color in deep shade, the fabrics were photografted under continuous UV irradiation with dimethylaminopropyl methacrylamide and 4-benzoyl benzoic acid as a monomer and a hydrogen -abstractable photoinitiator respectively. A UV energy of 35J/$cm^2$ and a photoinitiator concentration of ten percent or more with respect to the monomer in the formulation was required for optimal photografting. Grafting yield increased with higher monomer application level. Surface analysis indicated significant alterations in the atomic composition of the photografted fabric surface and the fabric surface was covered with the grafted polymers. While the pristine para-aramid fabrics showed no appreciable dyeability to the ${\alpha}$-bromoacrylamide reactive dyes, the grafted para-aramid fabrics enhanced the dyeability to the reactive dyes substantially. In case of C.I. Reactive Blue 50, a K/S value of 8.7 can be obtained with the grafted para-aramid fabrics with a grafting yield of 2.3 %. Also the color fastness properties of the dyed fabrics was excellent in the conditions of washing, rubbing and light irradiation.

Development of Thiourea-Formaldehyde Crosslinked Chitosan Membrane Networks for Separation of Cu (II) and Ni (II) Ions

  • Sudhavani, T.J.;Reddy, N. Sivagangi;Rao, K. Madhusudana;Rao, K.S.V. Krishna;Ramkumar, Jayshree;Reddy, A.V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1513-1520
    • /
    • 2013
  • Novel chitosan (CS) based membrane networks were developed by solution casting and followed by crosslinking with different crosslinkers such as glutaraldehyde, urea-formaldehyde, and thiourea-formaldehyde. The developed membrane networks were designated as CS-GA, CS-UF and CS-TF. Crosslinking reaction of CS membranes was confirmed by Fourier transform infrared spectroscopy. Membrane rigidity and compactness were studied by the differential scanning calorimetry. The surface morphology of CS membranes was characterized by scanning electron microscopy. The sorption behaviour with respect to contact time, initial pH and initial metal ion concentration were investigated. The maximum adsorption capacity of CS-GA, CS-UF and CS-TF sorbents was found to be 1.03, 1.2 and 1.18 mM/g for $Cu^{2+}$ and 1.48, 1.55 and 2.18 mM/g for $Ni^{2+}$ respectively. Swelling experiments have been performed on the membrane networks at $30^{\circ}C$. Desorption studies were performed in acid media and EDTA and it was found that the membranes are reusable for the metal ion removal for three cycles. The developed membranes could be successfully used for the separation of $Cu^{2+}$ and $Ni^{2+}$ metal ions from aqueous solutions.

Evaporator Thermal Performance Prediction on Automotive Air Conditioning System (자동차 공조장치용 증발기의 전열 성능 예측)

  • Kim, J.S.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.297-305
    • /
    • 1991
  • Recently, automotive air conditioning system manufacturers have been made a great efforts on the system compactness and high efficiency. This growing interest comes improvements in evaporator thermal performance, one of the most important factors affecting the performance of air conditioning system. In order to improve design of compact type evaporator, this study executes performs to develop a computer program for evaporator thermal performance prediction of automotive air conditioning system. The brief summaries of this study are as follows: 1) To predict the overall thermal performance of serpentine type evaporator, the new simulating method is developed. 2) The calculations are performed as functions of oil mass concentration and refrigerant two-phase distribution at inlet manifold of evaporator. 3) The validity of this simulating program is confirmed by comparing the predicted thermal performance results to experimental results of practical available evaporator. 4) Based on these results, suggestions are made to improve the thermal performance of evaporator.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Effect of MS Medium Strength, Sucrose Concentration, and Light Condition on Bulblet Formation and Growth of Muscari armenicum In Vitro (MS 배지내 무기물 농도, 당 농도 및 광 조건이 무스카리의 기내 자구 형성과 비대에 미치는 영향)

  • Chung, Mi-Young;Kim, Chang-Kil;Chung, Jae-Dong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • The influences of MS medium strength, sucrose concentration, and light condition on bulblet formation and growth were studied in leaf tissue culture of Muscari armenicum 'Early Giant'. Bulblet formation from leaf segments were the most effective on MS medium supplemented with $0.01mg{\cdot}L^{-1}$ NAA, $0.2m{\cdot}L^{-1}$ kinetin, $30g{\cdot}L^{-1}$ sucrose, and $8g{\cdot}L^{-1}$ gelrite under darkness for 2 weeks followed by 16 hr photoperiod with a photosynthetic photon flux density of $50mol{\cdot}m^{-2}{\cdot}s^{-1}$. However the compactness of bulblets formed in vitro was promoted in the MS medium with $60gL^{-1}$ sucrose. Acclimatized plants flowered during the second year of the growing period without any phenotypic variations and formed average 1.5 bulblets per mother bulb.

Effects of Different Application Approaches with Diniconazole on the Inhibition of Stem Elongation and the Stimulation of Root Development of Cylindrical Paper Pot Seedling (생장조절체 처리가 원통형 종이포트묘의 도장 억제 및 근권부 발달에 미치는 영향)

  • Jang, Dong Cheol;Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.365-372
    • /
    • 2020
  • This study was conducted to compare the effects of foliar spray and sub-irrigation of the triazole fungicide diniconazole on the regulation of stem elongation and to investigate the stimulation of root system development during the seedling stage. Comparing the two application approaches, there were significant differences in the leaf area, leaf area ratio (LAR), plant height, compactness, fresh shoot and root production, relative growth rate (RGR), and root to shoot ratio (R/S). At the same application concentration, the sub-irrigation showed a better retarding effect on growth than the foliar spray, because the PGR activity of diniconazole in root absorption was higher than that in shoot absorption. For reaching a target of 20% to 30% inhibition rate of stem length, foliar application concentration of diniconazole exceeded 10, however, only approximately 1 was required in the sub-irrigation application. The root system of tomato seedlings responded strongly to diniconazole application. Total root length, root volume, root average diameter, and the number of root tips increased when diniconazole was sub-irrigation application at 1. A reduction in fine roots (diameter range of 0 to 0.3 mm) and an increase in the roots with a diameter range of 0.3 to 0.6 mm was observed, and this may contribute to the increase in average diameter. The increase in root average diameter may be positive because root penetration increases with root diameter. Our results suggested that sub-irrigation maximized the PGR activity of diniconazole to enhance the retarding effect. And it also possible to enhance the tomato seedling root system by diniconazole stimulating with a lower concentration.

The Interaction of Nonionic Surfactant with Iodine in the Presence of $Ca^{2+}$ ($Ca^{2+}$ 존재하에서 비이온성 계면활성제와 요오드와의 상호작용)

  • Park Jeoung-Sun;Kwon Oh-Yun;Paek U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 1993
  • In the presence of $Ca^{2+}$ ion, the charge transfer (CT) interaction of nonionic surfactants, $nonylphenol-(ethylene oxide)_n\;[NP-(EO)_n; n = 11, 40, 100]$ with iodine in aqueous solution were investigated by UV-visible spectrophotometer. The characteristics of spectra depended on the concentration of $Ca^{2+}$ ion and the number of EO unit. Above CMC, the intensity of the CT band by the addition of $Ca^{2+}$ ion for the $NP-(EO)_{11}$ and $NP-(EO)_{40}$ increased and then decreased, while for the $NP-(EO)_{100}$ continuously increased. The increase in the intensity of CT band were attributed to the compactness of micelle in the presence of $Ca^{2+}$ ion. These phenomena may be explained by the fact that the linear ethylene oxide (EO) chain, to be free configuration in aqueous solution, could form a pseudo-crown ether structures capable of forming complexes with $Ca^{2+}$ ion.

  • PDF

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

An Approach to Determine the Good Seedling Quality of Grafted Tomatoes (Solanum Lycopersicum) Grown in Cylindrical Paper Pot Through the Relation Analysis between DQI and Short-Term Relative Growth Rate (DQI와 단기 상대생장률 분석을 이용한 원통형 종이포트 토마토 접목묘의 우량묘 기준 설정)

  • Seo, Tae Cheol;An, Se Woong;Jang, Hyun Woo;Nam, Chun Woo;Chun, Hee;Kim, Young chul;Kang, Tae Kyung;Lee, Sang Hee
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • Using cylindrical paper pot nursery method, three kinds of commercial tomatoes 'Dafnis', 'DOTAERANG DIA' and 'Maescala' were grafted onto a commercial rootstock 'B blocking'. From 10 to 40 days after graft-take, growth traits of seedlings were investigated by 0.5, 1.0 and 2.0S treatments of standard nutrient solution(S) for seedling growth, and top to root ratio(TRR), compactness(CP) and Dickson Quality Index(DQI) were calculated. Two weeks after transplanting of the seedlings under three different night temperature targeting to 10, 15, and $25^{\circ}C$, which were not precisely controlled, the relative growth rate (RGR) was investigated. The quantitative growth traits of grafted seedlings increased with increasing fertilizer concentration, and various range of seedling size could be produced. Compactness and DQI were significantly regressed (Adj $R^2=0.9480$). Short-term RGR after transplanting was higher at 1.0S treatment of standard nutrient solution at the seedling age of 30 days and 40 days after graft-take(DAGT). DQI and RGR were significantly regressed linearly at respective fertigation strength. Specially the diminishing slope of RGR was lower at 1.0S fertigation strength with the increase of DQI than others. The results indicate that DQI could be applied as a quality index of grafted tomato seedlings and the relation analysis between DQI and short-term RGR also could be used to determine the good quality seedlings of grafted tomato grown in cylindrical paper pot.

Photosynthetic Characteristics of Korean Endemic Plant, Aster koraiensis Nakai According to Growth and Development Conditions (생육환경에 따른 한국특산식물 벌개미취의 광합성 특성)

  • Nam, Hyo-Hoon;Son, Chang-Ki;Lee, Joong-Hwan;Kwon, Jung-Bae
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • This study was conducted to elucidate the photosynthetic response to the environment and establish optimum cultivation conditions for the Korean endemic plant, Aster koraiensis. Photosynthetic characteristics according to growth stage, light, CO2, and soil water potential were investigated. During the first year of transplanting, photosynthetic rates were drastically increased until June, after which they slowly declined, During the second year, photosynthetic rates declined throughout the entire growth period. The highest level of light compensation point was shown the early growth stage. Photosynthetic rates affected by intercellular CO2 concentration were maintained or decreased over the CO2 saturation point. The lowest CO2 compensation point was 16.1 μmol·mol−1 during March. The morphological changes of leaves were observed due to shading with chlorophyll contents increasing. Photosynthetic rates were higher at 0% and 50% shading treatments than at 75%. There were rarely any morphological changes of leaves due to soil moisture, however, changes to leaf compactness were observed. Photosynthetic rate, apparent quantum yield, and respiration rate increased, whereas water use efficiency decreased over −25 kPa of soil moisture.