• Title/Summary/Keyword: concentration measure

Search Result 1,484, Processing Time 0.049 seconds

Preparation of Polyphosphazene Diagnostic Membranes for Blood Glucose Measurements (혈당측정을 위한 폴리포스파젠 진단막의 제조)

  • Kwon, Suk-Ky
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • A new type of diagnostic membranes based on methoxyethoxy and trifluoroethoxy co-substituted polyphosphazene has been prepared to measure blood glucose level of diabetics. Final absorbances at 680 nm through activated polyphosphazene membranes were measured at various concentration of glucose in plasma or blood. The end-point results of varing absorbance values as time (K/S) was found to have a linear relationship toward the blood glucose concentration. The effects of substitution rates with hydrophilic groups and hydrophobic groups on the measurements of glucose concentration were studied. Dose-response slope (DRS) values between glucose concentration and K/S values increased as the hydrophilic substitution rates increased. However, in more than 30% of the substitution rates, it was difficult to measure exact concentration level of glucose because DRS increased rapidly.

Development and Application Effect of Gas Concentration Measure Experiment for the Improvement of Elementary School Teachers' Concept on Combustion (초등교사의 연소 개념 향상을 위한 기체 농도 측정 실험 개발 및 적용 효과)

  • Kim, Eun-Young;Kim, Youngshin;Shin, Ae-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.296-307
    • /
    • 2015
  • The purposes of this study were to develop the experiment for gas concentration measure during combustion of a candle and to investigate the application effect of the experiment. For this study, 15 elementary school teachers were selected by considering their gender, career, 6th grade science teaching experience, and 6th grade science teaching experience according to 2007 revised s cience curriculum. The experiment using MBL is designed to confirm gas concentrations visually during the combustion of a candle which burns in an acrylic container. The experiment method is as follows. 1) Make two sets of holes in the container and then insert oxygen sensors and carbon dioxide sensors in the holes. 2) Burn a candle in the container and observe the changes in the burning of the candle. The experiment has checked oxygen concentration and carbon dioxide concentration in real-time and displays gas concentration changes by graphs. The results of the application effect of the experiment are as follows. Most elementary school teachers who had not had scientific concepts on combustion got acquainted with scientific concepts about ‘the reason why a candle is blown out when it is covered with a bottle’, and ‘the concentrations of oxygen and carbon dioxide before and after combustion’. In addition, about half of elementary school teachers got acquainted with scientific concepts about ‘the definition of combustion’, and ‘distribution of carbon dioxide during combustion’. Thus, the experiment to measure gas concentrations during combustion is helpful to improve elementary school teachers’ concepts on combustion.

Changes in cognitive, concentration and performance in Bowling player Associated with Magnesium Water Supplementation (마그네슘 음료 섭취에 따른 볼링선수들의 인지기능과 집중력 및 경기력의 변화)

  • Kim, Kwan Kyu;Chung, Young Hee;Nam, Jung Hoon;Cho, In Ho;Park, Noh Hwan;Lim, Byung Yun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.333-339
    • /
    • 2019
  • The purpose of this study is to clarify the effect of magnesium water on the cognitive function, concentration and performance of bowling players. The total number of subjects in this study was 42, and changes in blood magnesium concentration, cognitive ability, concentration and performance were identified during the four-week experiment period. Data distribution was analyzed using SPSS18.0 with Normality test and Repeated measure two way ANOVA. Studies show that the concentration of magnesium in the blood of bowling players has changed with the intake of magnesium drinks, and that the concentration of magnesium in the blood has a proportional relationship with the cognitive function, concentration and performance.

Development of the Smallest, High-accuracy NDIR Methane Sensor Module to Detect Low Concentration (저 농도 감지를 위한 NDIR 방식의 초소형 고정도 메탄센서 모듈)

  • Kim, Dong-Hwan;Lee, Ihn;Bang, Il-Soon;Chun, Dong-Gi;Kim, Il-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.199-203
    • /
    • 2018
  • In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.

Performance Evaluation of Low-cost Optical Components used for Measuring the Optical Density and Concentration of Particulate Matter(PM) (입자상물질의 광학밀도 및 농도측정에 적용된 저가형 광학 부품의 성능평가)

  • Baik, Young Jo;Hong, Terki;Hwang, Cheol Hong;Park, Seul Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • The performance of a set of low-cost optical components used for measuring the optical density of PM particles was evaluated in the present study. To this end, the set of low-cost optical components was replaced with that of general optical components used to measure the PM optical density under identical experimental conditions. The optical densities measured from the set of general optical components were then compared to those obtained from the set of low-cost optical components. While the optical density is measured, another key parameter, the dimensionless extinction constant of PM particles (which is needed to optically measure the PM concentration) was also determined in the present study. The experimental results indicate that the optical density and PM concentration measurements performed by low-cost optical components are feasible, producing trackable variations in the OD and concentrations compared to values obtained from the set of general optical components.

Effect of Green Buffer Zone in Reducing Gaseous Air Pollutants in the Shiwha Industrial Area (시화공단 완충녹지대의 대기오염물질 저감 효과 분석)

  • Song Young-Bae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.90-97
    • /
    • 2006
  • The effects of a green buffer zone to protect a residential area from air pollution from industrial facilities and traffic was examined by analyzing the case of a green buffer zone in the Shiwha industrial complex. The green buffer zone is 175 m wide. The intent was to assess the dispersion patterns of atmospheric air pollutants and the reduction in concentration around the green buffer zone. To measure atmospheric sulfur dioxide$(SO_2)$ and nitrogen dioxide$(NO_2)$ concentration, badge-type passive samplers were used and set up at 76 locations in order to measure the concentration of air pollutants with respect to the spatial dispersion. The weighted mean values of $SO_2\;and\;NO_2$ concentration were $3\~57 ppb\;and\;18\~62 ppb$ and the differences among the green buffer zone, the industrial area and the residential areas were $0.7\~1.1 ppb$. Mean values of atmospheric concentrations of $NO_2$ were similar in industrial and, residential areas and the green buffer zone. Results of the study show that the effect of the green buffer zone on reducing the dispersion of air pollutants was very low. This study also recommends that micro-climate, i.e., wind direction should be considered as a factor for planning and design of green buffer zones.

Overestimation of Radioactivity Concentration of Difficult-To-Measure Radionuclides in Scaling Factor Methodology

  • Park, Junghwan;Kim, Tae-Hyeong;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.367-386
    • /
    • 2021
  • The overestimation and underestimation of the radioactivity concentration of difficult-to-measure radionuclides can occur during the implementation of the scaling factor (SF) method because of the uncertainties associated with sampling, radiochemical analysis, and application of SFs. Strict regulations ensure that the SF method as an indirect method does not underestimate the radioactivity of nuclear wastes; however, there are no clear regulatory guidelines regarding the overestimation. This has been leading to the misuse of the SF methodology by stakeholders such as waste disposal licensees and regulatory bodies. Previous studies have reported instances of overestimation in statistical implementation of the SF methodology. The analysis of the two most popular linear models of the SF methodology showed that severe overestimation may occur and radioactivity concentration data must be dealt with care. Since one major source of overestimation is the use of minimum detectable activity (MDA) values as true activity values, a comparative study of instrumental techniques that could reduce the MDAs was also conducted. Thermal ionization mass spectrometry was recommended as a suitable candidate for the trace level analysis of long-lived beta-emitters such as iodine-129. Additionally, the current status of the United States and Korea was reviewed from the perspective of overestimation.

A Compound Sensor and a Portable System for the Measurement of Urea-and-Glucose Concentration in Blood (혈중요소-혈당농도 측정 복합센서 및 휴대용 시스템)

  • 유재택;이동하;민남기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2871-2874
    • /
    • 2003
  • The development of a portable system to be used by diabetes patients and renal discase patients is needed to monitor their urea concentration and their glucose concentration in blood. This paper reports a compound sensor composed of a urea sensor, a glucose sensor and a micro-channel. This paper also reports the development of a portable measurement system to measure the concentrations, display the values, and save the values to be used by doctors.

  • PDF

On-line Measurement of $H_2$O/LiBr Concentration using Electric Conductivity (전기 전도도를 이용한 $H_2$O/LiBr 용액의 실시간 농도의 측정)

  • 박찬우;김정환;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1078-1083
    • /
    • 2002
  • The objectives of this paper are to measure the concentration of $H_2$O/LiBr solution by measuring the electrical conductivity and to study the effect of the solution temperature and the concentration on the electrical conductivity of the solution. The solution temperature ranges $20^{\circ},\;40^{\circ},\;and\; 60^{\circ}$ for a fixed concentration during the experiment. The valid ranges of the concentration are two regions, low concentration region (1~20% of LiBr) and high concentration region (55~66% of LiBr). The results show that the conductivity of the solution increases linearly with increasing the solution temperature while it increases without creasing the concentration lower than about 35% of LiBr and decreases with increasing the concentration higher than 35%. This paper proposes experimental correlations for the concentration as functions of the solution temperature and the concentration with error band of $\pm7$% for the low concentration region and $\pm1$% for the high concentration region, respectively. The experimental correlation can be practically used in the on-line measurement without any sampling of solution from the closed system.

Design and Implementation of a Blood-Glucose Meter to Reduce Hematocrit Interference (적혈구 용적률 간섭 보정을 위한 혈당 측정 기기의 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.167-175
    • /
    • 2020
  • A blood-glucose meter is one of the in vitro diagnostic devices to measure and control the glucose concentration of diabetics. In order to measure the glucose level in the blood, the common method is to measure the amount of electrons, that is, the output current generated by glucose oxidation after a blood sample is inserted into the test strip containing an enzyme. The hematocrit is an obstacle in measuring accurate blood glucose concentration. This paper deals with the design and implementation of a blood-glucose meter to correct the hematocrit interference. We propose a sequential method which measures impedance using the alternating current and then measures glucose in the blood using the direct current. In addition, this paper introduces how to use commercial glucose strips based on the proposed system. Finally, we conducted the performance evaluation of the proposed system by comparing the measured current and impedance with those of the references. As a result, the standard deviation of the current measurement is approximately 0.6nA and the impedance measurement error for measuring the hematocrit is approximately within 1%. The proposed system will improve the accuracy of the conventional blood-glucose meter by reducing the hematocrit interference.