• Title/Summary/Keyword: concentration index

Search Result 2,100, Processing Time 0.031 seconds

A Measurement of Degree of Cargo Concentration in Korean Ports Using the Entropy Index (엔트로피지수에 의한 국내항만의 화물집중도 측정)

  • 박노경
    • Journal of Korea Port Economic Association
    • /
    • v.20 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • The purpose of this paper is to analyze the degree of cargo concentration at Korean ports using Theil's Entropy and to compare the results with those of Gini coefficient, Hoyle(1983), and Hirshmann-Herfindahl models. The entropy indices were compared with other models after measuring the cargo concentration for the period of 1981-2000 among the 18 Korean ports. The core results of empirical analysis are as follows: first, the empirical results of entropy indices show the following trends: all the ports(concentration except 1996's slight deconcentration), ports in Western area(deconcentration in 1990s and slight concentration in 2000), ports in Southern area(deconcentration in 1980s and 1990s except concentration in 2000), and ports in Eastern area(continuous trends of concentration). However, competition power will be decreased if concentration is increased, because of the character of entropy index. The empirical results of 4 indices except Hoyle model show the comparatively same directions in terms of trends. This study found out the similar results among the following models: All the ports(entropy index & Gini coefficient & H-H model), ports in Western area(Entropy index &Hoyle model), ports in Southern area(Entropy index & Gini coefficient), and ports in Eastern area(Entropy index & H-H index).The policy planner of Korean ports should find out the determination factors of concentration and deconcentration of each ports and decide the investment priority, size and scope for balancing the development of regional ports.

  • PDF

Developing Concentration Index of Industrial and Occupational Accidents: The Case of European Countries

  • Lee, Sanghoon;Chang, Seong Rok;Suh, Yongyoon
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.266-274
    • /
    • 2020
  • Background: From only frequency rate of industrial accidents, it is difficult to define the industry composition of accident statistics in a nation. This study aims to propose and develop a new index for measuring the degree of concentration of industrial accidents using the concept of the Herfindahl-Hirschman Index in the case of European countries. Methods: Using the concept of the Herfindahl-Hirschman Index, the concentration index of accidents in the country is developed, and the conditions of European countries are compared using indexes of frequency rate and concentration ratio. Results: The frequency rate and concentration ratio of fatal and nonfatal accidents in European countries are compared. According to the economic condition and geographical position, different patterns of accidents concentration are presented in terms of frequency rate and concentration ratio. Conclusion: We develop the concentration index of industrial and occupational accidents that identifies the industrial ratio of accident occurrence, and the differentiated strategy can be formulated such as approaches to reducing frequency and prioritizing target industries.

On the Problem of Using Mixing Index Based on the Concentration Dispersion (농도분산에 근거한 혼합지수 사용의 문제)

  • Suh Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.796-805
    • /
    • 2006
  • In this study, the problem of using the mixing index as a measure of the mixing performance for a certain flow field has been discussed. The flow model subjected to this study is the two-dimensional unsteady lid-driven cavity flow. The transport equation for the concentration within the cavity was solved by using the finite volume method where the convective terms are discretized with the central difference scheme. It was shown that both the concentration dispersion and the mixing index depend highly on the initial distribution of the concentration, and therefore the mixing index obtained from the concentration dispersion equation loses its universal applicability.

Verification of Silt Density Index (SDI) as a fouling index for reverse osmosis (RO) feed water (역삼투 공정 파울링 지표로서 SDI(Silt Density Index)의 적합성 검증)

  • Kim, Su-Han;Kim, Chung-H.;Kang, Suk-H.;Lee, Won-T.;Lim, Jae-L.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.489-495
    • /
    • 2011
  • Silt Density Index (SDI) has been used as a fouling index for reverse osmosis (RO) processes for decades. In order to decrease RO fouling, feed water should meet SDI standard, which was used to select a proper pretreatment system for RO processes. However, SDI is supposed to be sensitive only to particles larger than 0.45 ${\mu}m$ in terms of diameters while nanoparticles and dissolved organic matter can be potent foulants for RO processes. Our study started from the suspected performance of SDI as a RO fouling index. SDI data from pilot plants located world wide including South Korea were collected and analyzed. Suspended partcle concentration (i.e., turbidity and particle counts), and dissolved organic matter concentration (i.e., dissolved orgnaic carbon (DOC) concentration) data were also collected and compared to SDI values of same water samples. We found that SDI values were not only affected by suspended particle concentration but also by dissolved organic matter concentration. Therefore SDI can be used as a reasonable fouling index for RO feed water because the main foulants for RO processes are suspended particle and dissolved organic matter.

Index Analysis Approach to Identifying Accident Concentration Level of Korean Industries (국내 산업재해집중수준 확인을 위한 지표분석)

  • Lee, Bong Keun;Suh, Yongyoon;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.59-65
    • /
    • 2020
  • For monitoring the status of industrial accidents, many statistical indexes have been developed and applied such as fatal rate, frequency rate, and severity rate. These accident indexes are measured by frequency and loss time according to the accidents in the individual industry level. However, it is less considered to use the index of identifying the industrial concentration of accidents in the holistic view. Thus, this study aims to suggest the accident concentration level among domestic industries through index analysis. The concentration level of industrial accidents is calculated by the accident composition of sub-industries. This concentration level shows whether an industry is comprised of a few sub-industries generating more accidents or an industry consists of sub-industries having the similar number of accidents. To this end, the concentration rate (CR) and concentration index (CI) are proposed to take a look at the industry composition of accidents by embracing the concept of market concentration indexes such as Hirschman-Herfindahl Index. As for the case study, four industries of mining, manufacturing, transportation, and other business (usually service) are analyzed in terms of indexes of accident rate, death(fatality) rate, and CR and CI of accident and death. Finally, we illustrate the positioning map that the accident concentration level is compared with the traditional accident frequency level among industries.

METHYL MERCAPTAN CONCENTRATION DURING EXPERIMENTAL GINGIVITIS IN MAN (실험적 치은염에서 구강내 휘발성 메틸머캅단 농도 변화에 관한 연구)

  • Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.1
    • /
    • pp.35-44
    • /
    • 1995
  • The purpose of present study was to evaluate the relationship between the early change of gingival condition and methyl mercaptan concentration during experimental gingivitis. Ten men(23-25 years old) whose gingiva were clinically healthy were selected. The participants have ceased to perform all forms of oral hygiene during 14 days and then did thorough plaque control for 7 days. For each subject, the methyl mercaptan concentration was measured by $B.B.Checker^{(R)}$ (Bad Breath Checker with printer, Tokuyama Soda Co.,LTD., Japan)before experiment and 1,4,7,14,21 days during experiment. Plaque index(Silness & $L\ddot{o}e$), gingival sulcus depth and sulcus bleeding index($M\ddot{u}hlemann$ & Son)score were recorded. The results were as follows. 1. Methyl mercaptan concentration increased continuously from the first day to the 14th day, decreased on the 21th day but it was still higher(P<0.001). 2. Plaque index score and sulcus bleeding index score tended to increase on the 4th day, markedly increased on the 14th day and returned to baseline level on the 21th day. 3. There was parallel relationhsip among methyl mercaptan concentration, plaque index score and sulcus bleeding index score. This result suggests that methyl mercaptan concentration increased with deterioration in gingival health, but decreased during recovery of normal health condition.

  • PDF

Changes in the Rheological Characteristics by Various Concentrations and Temperatures of Korean white Gruel (농도와 온도에 따른 흰죽의 리올로지 특성 변화)

  • Lee, Chang-Ho;Han, Ouk
    • Korean journal of food and cookery science
    • /
    • v.11 no.5
    • /
    • pp.552-556
    • /
    • 1995
  • The rheological properties of Korean white gruel at various concentrations (4-7%) and temperatures (30-60$^{\circ}C$) were investigated. The rheological behavior of Korean white gruel was evaluated by Herschel-Bulkley equation and showed typical Bingham psedoplastic behavior with yield stress. Flow behavior index was increased at over 5% of rice content. Consistency index was increased by the increase of concentration of rice. But, measuring temperature was not effected in the flow behavior index and consistency index. Yield stress was increased by the incerase of concentration of rice and the decrease of measuring temperature. The activation energy of flow of Korean gruel increased from 7.646 to 32.949${\times}$10/Sup 6/ J/Kg$.$ mole by increasing concentration from 4% to 7%. As the temperature increased from 30$^{\circ}C$ to 60$^{\circ}C$, B-value decresed from 1.214 to 0.947 Flow behavior index and consistency index was reduced during storage.

  • PDF

An experimental study on the viscosity of visco-elastic fluids (점탄성유체의 점성에 관한 실험적 연구)

  • 김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-41
    • /
    • 1982
  • Viscosity, especially characteristic among various properties of visco-elastic fluids such as high polymer solutions, is affected mainly by temperature and concentration. Hence, it is important for fluid engineering to express, by some equations, how the fluid characteristics vary with the change of temperature and concentration and to analyze them to obtain consistent viscous characteristics. High polymer solutions, synthetic products of modern chemical industry, suggest many interesting investigations because they are typical visco-elastic materials. Experimentation was made to derive some useful fluid characteristic equations of SEPARAN-NP10 (polyacylamide) expressed by n (flow behavior index) and K' (consistency index) when it is given temperature and concentration variation. To measure viscosity, capillary viscometer was adopted and the range of experimentation is 0-2,000 P.P.M. in concentration and 15-55 .deg.C in temperature. The experimental results are summarized as follows: The flow behavior index n 1) has nearly constant results irrespective of temperature variation at same conentration and the results are shown in (Table. 4-4-3) 2) has following equation, regardless of temperature, for the variation of concentration. n=-1.0765*10$^{-4}$ P+0.9915 (P:P.P.M.) The consistency index K' 1) has different results for the variation of temperature at same concentration and the results are given in (Table.4-7-2) 2) has following equation for the variation of concentration at same temperature. log 10$^{4}$K' =6.4785*10$^{-4}$ P-1.0529 (P:P.P.M)

  • PDF

Effect of pH, Electrolytes, and Molecular Weights of Sodium Alginate (Prepared from Sacchrina japonicas) on Gluten Surface Hydrophobicity (글루텐의 표면소수성에 미치는 전해질, pH 및 다시마(Sacchrina japonicas) 알긴산나트륨의 분자량의 영향)

  • Lim, Yeong-seon;Yoo, Byung-jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.543-551
    • /
    • 2021
  • Changes in gluten surface hydrophobicity, which play an important role in the functional characteristics of protein, were measured according to various protein concentrations, pH levels, electrolytes concentrations, and alginate molecular weights using 8-anilino-1-naphthalene sulfonic acid (ANS) as a fluorescent probe. Gluten surface hydrophobicity decreased as gluten concentration increased, reaching a maximum pH of 7.0. The effects of alginate molecular weights and alginate concentration on the surface hydrophobicity, emulsifying activity index (EAI), and emulsion stability index (ESI) of gluten-sodium alginate dispersion (GAD) were measured. Gluten surface hydrophobicity rapidly increased the asl NaCl concentration of gluten solution up to 300 mM and showed no significant increase above 300 mM. However, gluten surface hydrophobicity notably decreased until the concentration of CaCl2 and MgCl2 reached 30 mM, indicating no significant variations above 30 mM. GAD surface hydrophobicity increased as the concentration and molecular weight of sodium alginate increased, however, gluten concentration increased as the GAD surface hydrophobicity decreased. The EAI and ESI of GAD increased as both molecular weight and concentration of sodium alginate increased.

Setting of Regional Priorities in Preparedness for Marine HNS Spill Accident in Korea by using Concentration Index (집중도 지수를 활용한 HNS 사고 대비 우선지역 선정)

  • Ha, Min-Jae;Jang, Ha-Lyong;Kim, Tae-Hyung;Yun, Jong-Hwui;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.437-444
    • /
    • 2017
  • The concentration of the HNS Accident for each region was confirmed to prepare against an HNS Spill accident by using a Concentration Index which is used to assess industry concentration trend. This is to present the HNS Accident Concentration Index by combining HNS Accident Scale Concentration Index and an HNS Accident Frequency Concentration Index based on the data of marine spill accidents including the HNS accident. Based on the HNS Accident Concentration Index, Ulsan was identified as a top priority region for preparedness, Yeosu, Busan and Taean were identified as priority regions for preparedness, Gunsan, Mokpo, Wando, Incheon, Tongyeong, Pyeongtaek and Pohang were identified as necessary regions for preparedness, Donghae, Boryeong, Buan, Seogwipo, Sokcho, Jeju and Changwon, in which no marine spill accidents occurred, were identified as support regions for preparedness.