• Title/Summary/Keyword: concentration dependence

Search Result 546, Processing Time 0.025 seconds

Nicotine Addiction: Neurobiology and Mechanism

  • Tiwari, Raj Kumar;Sharma, Vikas;Pandey, Ravindra Kumar;Shukla, Shiv Shankar
    • Journal of Pharmacopuncture
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Nicotine, primary component of tobaco produces craving and withdrawal effect both in humans and animals. Nicotine shows a close resemblance to other addictive drugs in molecular, neuroanatomical and pharmacological, particularly the drugs which enhances the cognitive functions. Nicotine mainly shows its action through specific nicotinic acetylcholine receptors located in brain. It stimulates presynaptic acetylcholine receptors thereby enhancing Ach release and metabolism. Dopaminergic system is also stimulated by it, thus increasing the concentration of dopamine in nuclear accumbens. This property of nicotine according to various researchers is responsible for reinforcing behavioral change and dependence of nicotine. Various researchers have also depicted that some non dopaminergic systems are also involved for rewarding effect of nicotinic withdrawal. Neurological systems such as GABAergic, serotonergic, noradrenergic, and brain stem cholinergic may also be involved to mediate the actions of nicotine. Further, the neurobiological pathway to nicotine dependence might perhaps be appropriate to the attachment of nicotine to nicotinic acetylcholine receptors, peruse by stimulation of dopaminergic system and activation of general pharmacological changes that might be responsible for nicotine addiction. It is also suggested that MAO A and B both are restrained by nicotine. This enzyme helps in degradation dopamine, which is mainly responsible for nicotinic actions and dependence. Various questions remain uninsurable to nicotine mechanism and require more research. Also, various genetic methods united with modern instrumental analysis might result for more authentic information for nicotine addiction.

A New Method for Extracting Interface Trap Density in Short-Channel MOSFETs from Substrate-Bias-Dependent Subthreshold Slopes

  • Lyu, Jong-Son
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.11-25
    • /
    • 1993
  • Interface trap densities at gate oxide/silicon substrate ($SiO_2/Si$) interfaces of metal oxide semiconductor field-effect transistors (MOSFETs) were determined from the substrate bias dependence of the subthreshold slope measurement. This method enables the characterization of interface traps residing in the energy level between the midgap and that corresponding to the strong inversion of small size MOSFET. In consequence of the high accuracy of this method, the energy dependence of the interface trap density can be accurately determined. The application of this technique to a MOSFET showed good agreement with the result obtained through the high-frequency/quasi-static capacitance-voltage (C-V) technique for a MOS capacitor. Furthermore, the effective substrate dopant concentration obtained through this technique also showed good agreement with the result obtained through the body effect measurement.

  • PDF

Energetic Disorder Dependence of Optimal Trap Depth in the Space Charge Field Formation for Photorefractivity

  • Lee, Choong-Keun;Park, Sun-Kyung;Yang, Min-O;Lee, Nam-Soo;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.447-450
    • /
    • 2007
  • Trap effects on the formation of space-charge field (SCF) associated with the photorefractivity of nonlinear optical polymers were studied by the Monte Carlo simulation using modified Gaussian disorder model. The charge transport dynamics influenced by the presence of trap molecules controls the formation of SCF via the charge distribution. Temporal behavior of SCF formation and SCF dependence on the trap depth are discussed in terms of the concentration and distribution of charges (holes and ionized acceptors) developed following illumination of light. The correlation of the trap depth and the energetic disorder is presented for an optimal efficiency for the SCF formation.

The Influence of Cooling Rates on the CFR and the MDE of Al-Si Alloys. (Al-Si합금(合金)의 CFR 과 MDE 에 미치는 냉각속도(冷却速度)의 영향(影響))

  • Kwon, Hyuk-Moo;Kim, Soo-Young
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.14-19
    • /
    • 1984
  • In order to clarify the solidification mechanism of Al-Si alloy, Mushy Degree of Eutectic Solidification (MDE) and Centerline Feeding Resistance (CFR) were systematically studied by casting with various compositions of $Al-(6{\sim}18%)$ Si alloys into several kinds of molds having different cooling rates. The results are as follows: 1. CFR% increases slightly as solute concentration increases, but decreases remarkably as the cooling rate of the mold increases, that is, the composition dependence of the alloys has more effect on the change of CFR% than that of the mold cooling rate. 2. The composition dependence of MDE value has the same tendency as that of Degree of Eutectic Solidification (DES). MDE value within the range of hypereutectic composition is larger than that of hypoeutectic and it represents the maximum value at eutectic composition. The higher the cooling rate is, the less the MDE value is.

  • PDF

Dependence of Turn-On Voltage and Surface State Density on the Silicon Crystallographic Orientation (실리콘 결정의 방향성에 따른 Turn-On 전사과 추면대융단파의 상대성에 관한 연구)

  • 성영권;성만영;조철제;고기만;이병득
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.4
    • /
    • pp.157-163
    • /
    • 1984
  • The object of this paper is to investigte the gate controlled diode structure for ionic concentration measurement. It includes device fabrication, characterization, device physics and modeling of the gate controlled diode structure. The differences of turn on voltages and surface generation currents in the (100) and (111) silicon crystallographic orientation of the sample device were observed. Therefore the dependence of these two factors of the silicon crystallographic orientation was investigated. It was observed that drifts arose after extended immersion of the sample device in acid or base solutions. The surface generation-recombination velocity of both (100) and (111) increased. The increase in the interfacial traps for both surface, determined by the turn on voltage was directly proportional to the surface generation-recombination velocity increase.

  • PDF

Effect of Substrate Temperature on the Properties of ZnO Transparent conducting Thin Film Prepared by the Vapour Spraying Method (분사증기법에 의해 형성된 ZnO 투명전도막에서 기판온도가 막 특성에 미치는 영향)

  • 이환수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.436-447
    • /
    • 1994
  • ZnO transparent conducting thin film, which is a strong candidate for a transparent electrical contact in optoelectronic devices, was prepared by the vapour spraying method on the slide glass in nitrogen ambient at the atmospheric pressure. The structural, optical and electrical properties of films show a strong dependence on substrate temperature, and the optimum range of deposition temperature existed to obtain TCO(Transparent Conducting Oxide) films. At the higher temperatures, milky films were obtained. In such optimum range, the bandgap in ZnO films was determined from the spectral dependence of absorption coefficient and electrical characteristics were characterized with by the Hall mobility and carrier concentration.

  • PDF

The Effect of Urea on Volumetric and Viscometric Properties of Aqueous Solutions of Poly(ethylene oxide)

  • 전상일;백경구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1194-1198
    • /
    • 1998
  • The density and the viscosity of aqueous PEO solutions are observed with the several concentrations of PEO at 20 ℃. The effects of urea on them are also observed. The apparent and the partial specific volumes of PEO are calculated from the density data, which result that the polymer-polymer interaction is dominating in the binary aqueous PEO solutions, while the polymer-solvent interaction is dominating in the ternary aqueous urea-PEO solutions. It is explained by the urea induced breakage of the structured water originated from the hydrophobic interactions and the binding of the urea to the PEO chain. The concentration dependence of relative viscosity and the density dependence of fluidity is also discussed with the concept of the polymersolvent and the polymer-polymer interactions of aqueous urea-PEO solutions.

INVESTIGATION ON FERROMAGNETIC $Mn_{1-x}Co_{x}Pt_{3}$ ORDERED ALLOYS

  • Kaneko, T.;Fujimori, H.;Yoshida, H.;Watanabe, K.;Abe, S.;Matsumoto, M.;Yoshida, T.;Kanomata, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.758-761
    • /
    • 1995
  • The magnetization of $Mn_{1-x}Co_{x}Pt_{3}$ ordered alloys was measured at various temperatures and the pressure effect on $T_{c}$ for X=0.25, 0.5 and 0.6 was examined. The X dependence of $T_{c}$ determined by Arott plot has a minimum near X=0.6. The field-cooling effect measurement for X=0.5 shows a reentrant spin glass behavior. It is found that there is a concentration showing no pressure dependence of $T_{c}$ between X=0.25 and 0.5. These magnetic properties are discussed with a rigid band model.

  • PDF

Rheological Properties of Citrus Pectin Solutions (감귤류 펙틴 용액의 리올리지 특성)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.799-806
    • /
    • 1995
  • The steady shear and small amplitude oscillatory dynamic rheological properties of citrus pectin $([\eta]=3.75\;dL/g)$ were characterized for a wide range of pectin concentrations $({\sim}6%)$. The typical power-law flow was observed above 2.0% concentration, and the shear rate dependence of viscosity increased with pectin concentration. The transition from dilute to concentrated regime, determined from the double logarithmic plot of ${\eta_{sp.o}}\;vs\;C[\eta]$, occurred at a critical coil overlap parameter $C^{*}[\eta]\approx4.0$, at which ${\eta_{sp.o}}$ corresponded to approximately 10.0. The slopes of ${\eta_{sp.o}}\;vs\;C[\eta]$, at $C[\eta]\;at\;C[\eta]C^{*}[\eta]$were 1.1 and 4.5, respectively. The steady viscosity $(\eta)$ displayed a good superposition at ${\eta}/{\eta}_o\;vs\;{\gamma}/{\gamma}_{0.8}$ relation with an exception of high concentration (6%), which arised from the significant deviation of flow behavior index (n values of $\eta_{a}=K\gamma^{n-1}$) at high concentration. Dynamic measurements showed that the loss modulus $(G^{\prime\prime})$ was much higher than the storage modulus $(G^\prime)$for all concentrations studied, indicating predominant viscoelastic liquid-like behavior of pectin solutions. The frequency dependence of $G^\prime$ was higher than that of $G^\prime\prime$ at the same concentration, whose trend was more pronounced with decreasing pectin concentration. The shear viscosity $(\eta)$ was almost identical to the complex viscosity $(\eta^{*})$ at low concentration, following the Cox-Merz rule, but they became increasingly different at high concentration.

  • PDF

Preparation and Rheological Properties of Chitin and Chitosan -2. Effects of shear rate, temperature, concentration and salts on the viscosity of chitosan solution- (갑각류 외피의 유효이용을 위한 Chitin 및 Chitosan의 제조와 물성학적 특성에 관한 연구 -2. Chitosan 용액의 점도에 미치는 전단속도, 온도, 농도 및 염의 영향-)

  • LEE Keun-Tai;PARK Seong-Min;BAIK Oon-Doo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.397-400
    • /
    • 1995
  • Effects of rheological parameters, such as shear rate, temperature, concerntration, salts on the apparent viscosity of chitosan(deacetylation degree: $84\%$, Mw: 267,000) dissolved in acetate buffer(pH 4.5) were investigated. Rheologiral properties of chitosan solution from cuticle of red snow crab (Chinonecetes japonicus) are as follows. $0.5\%$ chitosan in 0.1M acetate buffer (pH 4.5) solution showed Bingham flow having hysteresis loop. It's flow equation was $\sigma=0.757+19.6_\gamma(r^2=0.99)$. The viscosity of chitosan solution is exponentially increased with its concentration, and showed Arrhenius dependence with respect to the temperature $(10^{\circ}C-40^{\circ}C).$ When various salts were added to chitosan solution, the viscosity decreased as the concentration of counterion increased. But the type ot counterions itself does not have any significant effects on the viscosity.

  • PDF