• Title/Summary/Keyword: computing speed

Search Result 898, Processing Time 0.029 seconds

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

Real-time Color Recognition Based on Graphic Hardware Acceleration (그래픽 하드웨어 가속을 이용한 실시간 색상 인식)

  • Kim, Ku-Jin;Yoon, Ji-Young;Choi, Yoo-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we present a real-time algorithm for recognizing the vehicle color from the indoor and outdoor vehicle images based on GPU (Graphics Processing Unit) acceleration. In the preprocessing step, we construct feature victors from the sample vehicle images with different colors. Then, we combine the feature vectors for each color and store them as a reference texture that would be used in the GPU. Given an input vehicle image, the CPU constructs its feature Hector, and then the GPU compares it with the sample feature vectors in the reference texture. The similarities between the input feature vector and the sample feature vectors for each color are measured, and then the result is transferred to the CPU to recognize the vehicle color. The output colors are categorized into seven colors that include three achromatic colors: black, silver, and white and four chromatic colors: red, yellow, blue, and green. We construct feature vectors by using the histograms which consist of hue-saturation pairs and hue-intensity pairs. The weight factor is given to the saturation values. Our algorithm shows 94.67% of successful color recognition rate, by using a large number of sample images captured in various environments, by generating feature vectors that distinguish different colors, and by utilizing an appropriate likelihood function. We also accelerate the speed of color recognition by utilizing the parallel computation functionality in the GPU. In the experiments, we constructed a reference texture from 7,168 sample images, where 1,024 images were used for each color. The average time for generating a feature vector is 0.509ms for the $150{\times}113$ resolution image. After the feature vector is constructed, the execution time for GPU-based color recognition is 2.316ms in average, and this is 5.47 times faster than the case when the algorithm is executed in the CPU. Our experiments were limited to the vehicle images only, but our algorithm can be extended to the input images of the general objects.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

A Study on Establishment of Safety Training Center Based on Virtual Reality and Augmented Reality Technology for Military Safety and Suicide Accident Prevention (가상현실(VR/AR) 기술 기반으로 군 안전 및 자살사고 예방을 위한 안전체험훈련장 구축 방안에 관한 연구)

  • Choi, Sung-oh;Min, Yong-sik;Kim, Sung-Il;Ghoi, Jong-geun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.139-148
    • /
    • 2020
  • Due to change in circumstances in the 2000s such as severe birthrate decline and shortened military service period, the armed forces of the Republic of Korea is currently turning to technologies and equipments from manpower, developing it to become high-tech, high-speed, and complex, resulting in an environment in which a single mistake could cause a mass mortality crisis.It is also evident that, considering aspects such as safety training curriculums and achievements of advanced countries and private education, hands-on training is a must in preventing suicides and accidents in the military, and establishing safety training centers is crucial for systematic and effective hands-on training.Soldiers who are joining the army as of now have experienced the Internet ever since they were born and easily use both virtual and augmented reality, and the current level of science and technology has developed to the point where most of the public safety experience centers are able to be replaced by virtual and augmented reality (VR/AR). Therefore, considering the aspects such as installation space, construction costs, maintenance costs, user characteristics, and education effects, other than for those trainings where real models and objects are more effective such as first aid training, it is with a strong recommendation that establishing military safety training facilities with VR/AR (Virtual and augmented reality) is a must in the coming future. We have derived the need for hands-on training by considering the development of virtual and augmented reality (VR/AR), analysis of operation status of the public safety experience centers, characteristics of military units, installation and maintenance costs, and proposed plan to establish safety training centers where effective training performance can be achieved at a lower cost than the public safety experience center. In addition, we suggested the scale of the required safety training center and the composition of the experience rooms considering the number of trainees and the environment of each military units. Given this analysis it will contribute to the prevention of military safety and suicide by building a safety training center in the future.

Design and Implementation of Content-based Video Database using an Integrated Video Indexing Method (통합된 비디오 인덱싱 방법을 이용한 내용기반 비디오 데이타베이스의 설계 및 구현)

  • Lee, Tae-Dong;Kim, Min-Koo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.661-683
    • /
    • 2001
  • There is a rapid increase in the use of digital video information in recent years, it becomes more important to manage video databases efficiently. The development of high speed data network and digital techniques has emerged new multimedia applications such as internet broadcasting, Video On Demand(VOD) combined with video data processing and computer. Video database should be construct for searching fast, efficient video be extract the accurate feature information of video with more massive and more complex characteristics. Video database are essential differences between video databases and traditional databases. These differences lead to interesting new issues in searching of video, data modeling. So, cause us to consider new generation method of database, efficient retrieval method of video. In this paper, We propose the construction and generation method of the video database based on contents which is able to accumulate the meaningful structure of video and the prior production information. And by the proposed the construction and generation method of the video database implemented the video database which can produce the new contents for the internet broadcasting centralized on the video database. For this production, We proposed the video indexing method which integrates the annotation-based retrieval and the content-based retrieval in order to extract and retrieval the feature information of the video data using the relationship between the meaningful structure and the prior production information on the process of the video parsing and extracting the representative key frame. We can improve the performance of the video contents retrieval, because the integrated video indexing method is using the content-based metadata type represented in the low level of video and the annotation-based metadata type impressed in the high level which is difficult to extract the feature information of the video at he same time.

  • PDF

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.