• 제목/요약/키워드: computer-based technology

검색결과 8,923건 처리시간 0.035초

Cancer Prediction Based on Radical Basis Function Neural Network with Particle Swarm Optimization

  • Yan, Xiao-Bo;Xiong, Wei-Qing;Hu, Liang;Zhao, Kuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7775-7780
    • /
    • 2014
  • This paper addresses cancer prediction based on radial basis function neural network optimized by particle swarm optimization. Today, cancer hazard to people is increasing, and it is often difficult to cure cancer. The occurrence of cancer can be predicted by the method of the computer so that people can take timely and effective measures to prevent the occurrence of cancer. In this paper, the occurrence of cancer is predicted by the means of Radial Basis Function Neural Network Optimized by Particle Swarm Optimization. The neural network parameters to be optimized include the weight vector between network hidden layer and output layer, and the threshold of output layer neurons. The experimental data were obtained from the Wisconsin breast cancer database. A total of 12 experiments were done by setting 12 different sets of experimental result reliability. The findings show that the method can improve the accuracy, reliability and stability of cancer prediction greatly and effectively.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Accurate Range-free Localization Based on Quantum Particle Swarm Optimization in Heterogeneous Wireless Sensor Networks

  • Wu, Wenlan;Wen, Xianbin;Xu, Haixia;Yuan, Liming;Meng, Qingxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1083-1097
    • /
    • 2018
  • This paper presents a novel range-free localization algorithm based on quantum particle swarm optimization. The proposed algorithm is capable of estimating the distance between two non-neighboring sensors for multi-hop heterogeneous wireless sensor networks where all nodes' communication ranges are different. Firstly, we construct a new cumulative distribution function of expected hop progress for sensor nodes with different transmission capability. Then, the distance between any two nodes can be computed accurately and effectively by deriving the mathematical expectation of cumulative distribution function. Finally, quantum particle swarm optimization algorithm is used to improve the positioning accuracy. Simulation results show that the proposed algorithm is superior in the localization accuracy and efficiency when used in random and uniform placement of nodes for heterogeneous wireless sensor networks.

KNOWLEDGE-BASED BOUNDARY EXTRACTION OF MULTI-CLASSES OBJECTS

  • Park, Hae-Chul;Shin, Ho-Chul;Lee, Jin-Sung;Cho, Ju-Hyun;Kim, Seong-Dae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1968-1971
    • /
    • 2003
  • We propose a knowledge-based algorithm for extracting an object boundary from low-quality image like the forward looking infrared image. With the multi-classes training data set, the global shape is modeled by multispace KL(MKL)[1] and curvature model. And the objective function for fitting the deformable boundary template represented by the shape model to true boundary in an input image is formulated by Bales rule. Simulation results show that our method has more accurateness in case of multi-classes training set and performs better in the sense of computation cost than point distribution model(PDM)[2]. It works well in distortion under the noise, pose variation and some kinds of occlusions.

  • PDF

Scaling Inter-domain Routing System via Path Exploration Aggregation

  • Wang, Xiaoqiang;Zhu, Peidong;Lu, Xicheng;Chen, Kan;Cao, Huayang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.490-508
    • /
    • 2013
  • One of the most important scalability issues facing the current Internet is the rapidly increasing rate of BGP updates (BGP churn), to which route flap and path exploration are the two major contributors. Current countermeasures would either cause severe reachability loss or delay BGP convergence, and are becoming less attractive for the rising concern about routing convergence as the prevalence of Internet-based real time applications. Based on the observation that highly active prefixes usually repeatedly explore very few as-paths during path exploration, we propose a router-level mechanism, Path Exploration Aggregation (PEA), to scale BGP without either causing prefix unreachable or slowing routing convergence. PEA performs aggregation on the transient paths explored by a highly active prefix, and propagates the aggregated path instead to reduce the updates caused by as-path changes. Moreover, in order to avoid the use of unstable routes, PEA purposely prolongs the aggregated path via as-path prepending to make it less preferred in the perspective of downstream routers. With the BGP traces obtained from RouteViews and RIPE-RIS projects, PEA can reduce BGP updates by up to 63.1%, shorten path exploration duration by up to 53.3%, and accelerate the convergence 7.39 seconds on average per routing event.

Incremental Fuzzy Clustering Based on a Fuzzy Scatter Matrix

  • Liu, Yongli;Wang, Hengda;Duan, Tianyi;Chen, Jingli;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.359-373
    • /
    • 2019
  • For clustering large-scale data, which cannot be loaded into memory entirely, incremental clustering algorithms are very popular. Usually, these algorithms only concern the within-cluster compactness and ignore the between-cluster separation. In this paper, we propose two incremental fuzzy compactness and separation (FCS) clustering algorithms, Single-Pass FCS (SPFCS) and Online FCS (OFCS), based on a fuzzy scatter matrix. Firstly, we introduce two incremental clustering methods called single-pass and online fuzzy C-means algorithms. Then, we combine these two methods separately with the weighted fuzzy C-means algorithm, so that they can be applied to the FCS algorithm. Afterwards, we optimize the within-cluster matrix and betweencluster matrix simultaneously to obtain the minimum within-cluster distance and maximum between-cluster distance. Finally, large-scale datasets can be well clustered within limited memory. We implemented experiments on some artificial datasets and real datasets separately. And experimental results show that, compared with SPFCM and OFCM, our SPFCS and OFCS are more robust to the value of fuzzy index m and noise.

Brainwave-based Mood Classification Using Regularized Common Spatial Pattern Filter

  • Shin, Saim;Jang, Sei-Jin;Lee, Donghyun;Park, Unsang;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.807-824
    • /
    • 2016
  • In this paper, a method of mood classification based on user brainwaves is proposed for real-time application in commercial services. Unlike conventional mood analyzing systems, the proposed method focuses on classifying real-time user moods by analyzing the user's brainwaves. Applying brainwave-related research in commercial services requires two elements - robust performance and comfortable fit of. This paper proposes a filter based on Regularized Common Spatial Patterns (RCSP) and presents its use in the implementation of mood classification for a music service via a wireless consumer electroencephalography (EEG) device that has only 14 pins. Despite the use of fewer pins, the proposed system demonstrates approximately 10% point higher accuracy in mood classification, using the same dataset, compared to one of the best EEG-based mood-classification systems using a skullcap with 32 pins (EU FP7 PetaMedia project). This paper confirms the commercial viability of brainwave-based mood-classification technology. To analyze the improvements of the system, the changes of feature variations after applying RCSP filters and performance variations between users are also investigated. Furthermore, as a prototype service, this paper introduces a mood-based music list management system called MyMusicShuffler based on the proposed mood-classification method.

Using Immersive Augmented Reality to Assess the Effectiveness of Construction Safety Training

  • Kim, Kyungki;Alshair, Mohammed;Holtkamp, Brian;Yun, Chang;Khalafi, SeyedAmirhesam;Song, Lingguang;Suh, Min Jae
    • Journal of Construction Engineering and Project Management
    • /
    • 제9권4호
    • /
    • pp.16-33
    • /
    • 2019
  • The increasing size and complexity of modern construction projects demands mature capabilities of onsite personnel with regard to recognizing unsafe situations. Construction safety training is paper or computer-based and suffers from a distinct gap between the classroom training environment and real-world construction sites; even trained personnel can find it difficult to recognize many of the potential safety hazards at their jobsites even after receiving construction safety training. Immersive technologies can overcome the current limitations in construction safety training by reducing the gap between the classroom and a real construction environment. This research developed and tested a new Augmented Reality (AR)-based assessment tool to evaluate the hazard recognition skills of students majoring in construction management as part of a construction safety course. The quantitative and qualitative results of this research confirmed that AR-based assessment can become a very effective assessment tool to evaluate safety knowledge and skills in a construction safety course, outperforming both paper and computer-based assessment methods. The students preferred AR-based assessment because it provides a realistic visual context for real world safety hazards.

컴퓨터 적응형 알고리즘을 이용한 웹기반 시험 시스템 설계 및 구축 (A Design and Implementation of Web-based Test System using Computer-adaptive Test Algorithm)

  • 조성호
    • 컴퓨터교육학회논문지
    • /
    • 제7권6호
    • /
    • pp.69-76
    • /
    • 2004
  • e러닝을 교육과 학습을 위하여 e비즈니스 기술 및 서비스를 사용하는 응용프로그램이다. 이는 원격지 자원과 서비스에 접근을 수월하게 함으로서 교육의 질을 높이기 위한 새로운 멀티미디어 및 인터넷 기술을 사용한다. 본 논문은 실제 TOEFL CBT에 기반을 두어 신중하게 설계되고 구현된 인터넷기반의 시험 시스템에 대하여 기술한다. 본 시스템은 콘텐츠 전달 기술, 컴퓨터 적응형 시험 알고리즘, 리뷰엔진으로 구성되어 있다. 본 논문에서는 컴퓨터기반 시험 시스템을 설계 및 구현 시 고려사항들에 대하여 서술한다.

  • PDF

Enhanced MPR Selection Strategy for Multicast OLSR

  • Matter, Safaa S.;Al Shaikhli, Imad F.;Hashim, Aisha H.A.;Ahmed, Abdelmoty M.;Khattab, Mahmoud M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.137-144
    • /
    • 2022
  • Wireless community networks (WCNs) are considered another form of ownership of internet protocol (IP) networks, where community members manage and own every piece of equipment in a decentralized way, and routing for traffic is done in a cooperative manner. However, the current routing protocols for WCNs suffer from stability and scalability issues. In this paper, an enhanced routing protocol is proposed based on the optimized link state routing (OLSR) protocol to meet the standards of efficiency in terms of stability and scalability. The proposed routing protocol is enhanced through two phases: multicasting expansion and multipoint relay (MPR) selection based on an analytical hierarchical process (AHP). The experimental results demonstrate that the proposed routing protocol outperforms the OLSR protocol in terms of network control overhead and packet delivery ratio by 18% and 1% respectively.