• Title/Summary/Keyword: computer-aided designing

Search Result 66, Processing Time 0.025 seconds

Fabrication of computer-aided design/computer-aided manufacturing complete denture and conventional complete denture: case report (CAD/CAM system과 전통적인 방법을 이용한 총의치 동시 제작 증례)

  • Kim, Mi-Jin;Kim, Kang-Ho;Yeo, Dong-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Recently computer-aided technology has been widely used in dentistry. DENTCA$^{TM}$ CAD/CAM denture system (DENTCA Inc.), one of CAD/CAM systems for fabricating complete denture, tries to collect and store all of a patient's information at the first visit. This system aims to deliver denture at the second visit through utilizing the CAD/CAM software to access the stored data for designing the 3D denture model. The 3 dimensional (3D) denture will then be fabricated with 3D printer. Many case reports have evaluated clinical application of CAD/CAM system for fabricating complete dentures. This case report is about fabricating of complete dentures using DENTCA system and conventional method in same patient. With two cases, usefulness and limitation of DENTCA system could be evaluated.

RPD framework fabrication using computer-aided design (CAD) and rapid prototyping (Computer-aided design (CAD) 및 쾌속조형술을 이용한 가철성 국소의치 수복 증례)

  • Park, Seon-Ah;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Nowadays, digital dentistry is generally applied to prosthodontics with fabrication of inlays or any other fixed prostheses by utilizing CAD/CAM (computer-aided design/computer-aided manufacturing) technology and intraoral scanner. However, in fabricating removable prosthesis, there are some limitations for digital technology to substitute conventional casting method. Therefore, approaching removable prostheses fabrication with CAD/CAM technology would be a meaningful trial. In this case report, Kennedy class III mandibular edentulous patient who was in need of increasing the vertical dimension of occlusion was treated with removable partial denture using CAD and rapid prototyping technique. Surveying and designing the metal framework of the partial denture was performed with CAD, and sacrificial plastic pattern was fabricated with rapid prototyping technique. During the follow up period of nine months, the removable partial denture has provided satisfactory results in esthetics and function.

Computer aided reinforcement design of RC structures

  • An, Xuehui;Maekawa, Koichi
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.15-30
    • /
    • 2004
  • In this study, a design process for reinforced concrete structures using the nonlinear FEM analysis is developed. Instead of using the nonlinear analysis to evaluate the required performance after design process, the nonlinear analysis is applied before designing the reinforcement arrangement inside the RC structures. An automatic reinforcement generator for computer aided reinforcement agreement is developed for this purpose. Based on a nonlinear FEM program for analyzing the reinforced concrete structure, a smart fictitious material model of steel, is proposed which can self-adjust the reinforcement to the required amount at the cracking location according to the load increment. Using this tool, the reinforcement ratio required at design load level can be decided automatically. In this paper, an example of RC beam with opening is used to verify the proposed process. Finally, a trial design process for a real size underground RC LNG tank is introduced.

Computer aided design system for robotic painting line (동장공정의 로보틱자동화를 위한 설계지원 시스템)

  • Suh, Suk-Hwan;Cho, Jung-Hoon;Kang, Dae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

GT에 의한 부품설계의 능률 향상에 관한 연구

  • 최홍태;반갑수;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.215-218
    • /
    • 1991
  • In designing the Machine element, most or part drawings are composed of basic entities. The basic entitles are classified into groups in order to enhance the drawing efficiency of computer aided design system based on GT concept. This paper deals with the generalization of handling drawing procedures which can cover the standard parts and the basic constitutional part of mold base.

  • PDF

Effect of different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium crowns produced by computer-aided designing and selective laser melting processes

  • Yu, Na;Dai, Hong-Wei;Tan, Fa-Bing;Song, Jin-Lin;Ma, Chao-Yi;Tong, Xue-Lu
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.333-342
    • /
    • 2021
  • PURPOSE. To evaluate the impact of five different tooth preparation designs on the marginal and internal fit discrepancies of cobalt-chromium (CoCr) crowns produced by computer-aided designing (CAD) and selective laser melting (SLM) processes. MATERIALS AND METHODS. Five preparation data were constructed, after which design crowns were obtained. Actual crowns were fabricated using an SLM process. After the data of actual crowns were obtained with structural light scanning, intaglio surfaces of the design crown and actual crown were virtually superimposed on the preparation. The fit-discrepancies were displayed with colors, while the root means square was calculated and analyzed with one-way analysis of variance (ANOVA), Tukey's test or Kruskal-Wallis test (α = .05). RESULTS. The marginal or internal color-coded images in the five design groups were not identical. The shoulder-lip and sharp line angle groups in the CAD or SLM process had larger marginal or internal fit discrepancies compared to other groups (P < .05). In the CAD process, the mean marginal and internal fit discrepancies were 10.0 to 24.2 ㎛ and 29.6 to 31.4 ㎛, respectively. After the CAD and SLM processes, the mean marginal and internal fit discrepancies were 18.4 to 40.9 ㎛ and 39.1 to 47.1 ㎛, respectively. The SLM process itself resulted in a positive increase of the marginal (6.0 - 16.7 ㎛) and internal (9.0 - 15.7 ㎛) fit discrepancies. CONCLUSION. The CAD and SLM processes affected the fit of CoCr crowns and varied based on the preparation designs. Typically, the shoulder-lip and sharp line angle designs had a more significant effect on crown fit. However, the differences between the design groups were relatively small, especially when compared to fit discrepancies observed clinically.

A Study on the 3D model Automatic formation using form measurement data (형상측정 데이터를 이용한 3차원 모텔 자동생성에 관한 연구)

  • Kim, M.J.;Lee, S.S.;Kim, T.H.;Park, J.B.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.152-157
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 30 scanner and using an Automatic Design Program. The research studied in th reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape sol id models in CAE and CAM. based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 30 scanner in this study with which we will open a new field of reverse engineering by a program which can design a 3D-shape solid model in a CDA-based program automatically. Utilization of this program make it possible to minimize time in designing a product and establish a ADS(Automatic design system) program library to using all of the data from reverse engineering.

  • PDF

Computer-Aided Design of Involute Cylindrical Gears for Power Transmission (컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계)

  • 정태형;김민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.594-602
    • /
    • 1990
  • A computer-aided design system of involute cylindrical gears(spur and helical gears) for power transmission is developed, in which the volume of a gear unit is minimized with satisfying various design constraints. As the design constraints, bending strength and pitting resistance of AGMA 218.01, scoring of Dudley's flash temperature, contact ratio, and involute interference of pinion are considered and effective factors for strength calculation(life, reliability, hardness ratio, load distribution, velocity, etc.) are also included. This complicated nonlinear optimization problem is solved by using ALM(Augmented-Lagrange-Multiplier) method with self scaling BFGS(Broydon-Fletcher-Goldfarb-Shanno) method employed for unconstrained optimization programming. This design method can be easily applied to designing power transmission gear unit in the machines of various kinds. It is expected for the proposed method to be a contribution for an automated design of gear unit towards weight minimization, miniaturization and high strength of gear unit.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

A Study on 3D modeling using a 3D scanner and VisualLISP (3D scanner 와 VisualLISP을 이용한 3차원 모델링에 관한 연구)

  • 김세민;이승수;김민주;장성규;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.410-413
    • /
    • 2001
  • This paper is to model a 3D-shape product applying mathematically the data acquired from a 3D scanner and using an Automatic Design Program. The research studied in the reverse engineering up to now has been developed continuously and surprisingly. However, forming 3D-shape solid models in CAE and CAM, based on the research, the study leaves much to be desired. Especially, analyses and studies reverse-designing automatically using measured data after manufacturing. Consequently, we are going to acquire geometric data using an 3D scanner in this study with which we will open a new field of reverse engineering by a program whic hcan design a 3D-shape solid model in a CAD-based program automatically.

  • PDF