• 제목/요약/키워드: computer immune system

검색결과 88건 처리시간 0.027초

면역알고리즘 기반의 MECs (에너지 허브) 시스템 (An Immune Algorithm based Multiple Energy Carriers System)

  • 손병락;강유경;이현
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

컴퓨터 면역시스템 개발을 위한 인공면역계의 모델링과 자기인식 알고리즘 (Modelling of Artificial Immune System for Development of Computer Immune system and Self Recognition Algorithm)

  • 심귀보;서동일;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.52-60
    • /
    • 2002
  • 최근 컴퓨터의 사용이 보편화되면서 악의적 사용자에 의해 발생하는 컴퓨터 바이러스와 해킹에 의한 피해가 급속히 증가하고 있다. 남의 컴퓨터에 침입하는 해킹이나 데이터를 파괴하는 컴퓨터 바이러스에 의한 피해를 막기 위해 최근에 생명체의 면역시스템의 특징을 이용해 인공면역계를 구성해 시스템 침입탐지와 바이러스 탐지 및 치료에 대한 연구가 활발히 진행 중에 있다. 생체 면역계는 외부에서 침입해 세포나 장기에 피해를 주는 물질인 항원을 스스로 자기세포와 구분해 인식.제거하는 기능이 있다. 이러한 면역계의 특징인 항원을 인식하는 기능은 자기세포의 확실한 인식을 가지고 있는 상태에서 다른 물질을 구분하는 자기.비자기 인식방법으로 똘 수 있다. 본 논문에서는 생체 면역계에서 세포독성 T세포의 생성과정의 하나인 Negative 및 Positive Selection을 모델링하여 침입에 의한 데이터 변경과 바이러스에 의한 데이터 감염 등을 탐지할 때 가장 중요한 요소인 자기 인식 알고리즘을 구현한다. 제안한 알고리즘은 큰 파일에서의 Detection을 구성하기 용이한 점을 가지며 국소(cell)변경과 블록(string)변경에 대한 자기인식률을 통해 알고리즘의 유효성을 검증한다.

네트워크 침입 탐지를 위한 인공 면역 모델의 개발 (A Development of Artificial Immune Model for Network Intrusion Detection)

  • 김정원;;정길호;최종욱
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.373-379
    • /
    • 1999
  • This pqer investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's.

  • PDF

Adaptive Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.146-156
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,\dot{x},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

세포성 면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구 (Design of Steering Controller of AGV using Cell Mediate Immune Algorithm)

  • 이영진;이진우;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.827-836
    • /
    • 2001
  • The PID controller has been widely applied to the most control systems because of its simple structure and east designing. One of the important points to design the PID control system is to tune the approximate control parameters for the given target system. To find the PID parameters using Ziegler Nichols(ZN) method needs a lot of experience and experiments to ensure the optimal performance. In this paper, CMIA(Cell Mediated Immune Algorithm) controller is proposed to drive the autonomous guided vehicle (AGV) more effectively. The proposed controller is based on specific immune responses of the biological immune system which is the cell mediated immunity. To verify the performance of the proposed CMIA controller, some experiments for the control of steering and speed of that AGV are performed. The tracking error of the AGV is mainly investigated for this purpose. As a result, the capability of realization and reliableness are proved by comparing the response characteristics of the proposed CMIA controllers with those of the conventional PID and NNPID(Neural Network PID) controller.

  • PDF

Adaptive Intelligent Control of Inverted Pendulum Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2372-2377
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,{\dot{x}},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

  • PDF

A Design of Adaptive Steering Controller of AGV using Immune Algorithm

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Kwon-Soon;Lee, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.3-120
    • /
    • 2002
  • 1. Introduction $\textbullet$ Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etc. Immune algorithm is the modeling of this system's response that has adaptation and reliableness when disturbance occur. $\textbullet$ In this paper, Immune algorithm is applied to the Steering Controller of AGV in container yard. $\textbullet$ And then the computer simulation result from the viewpoint of yaw rate and lateral displacement is analyzed and compared with result of conventional PID controller. 2. Dynamic Modeling of AGV $\textbullet$ Dynamic modeling has high degree of freedom. But, basic assumptions of this model are that the center of gravity(CG)...

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

컴퓨터 면역 시스템을 기반으로 한 지능형 침입탐지시스템 (Intelligent Intrusion Detection System based on Computer Immune System)

  • 이종성;채수환
    • 한국정보처리학회논문지
    • /
    • 제6권12호
    • /
    • pp.3622-3633
    • /
    • 1999
  • 컴퓨터망의 확대 및 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있다. 이에 따라 침입자들로부터 침입을 줄이기 위한 침입탐지시스템에 관한 연구가 활발하다. 본 논문은 비정상적인 행위를 탐지하는 침입탐지시스템에 관해 고찰하고, 컴퓨터 면역시스템을 바탕으로 한 지능형 IDS 모델을 제안한다. 제안한 모델에서 지능형 IDS들은 여러 컴퓨터에 분산되고, 분산된 IDS들 중 어느 하나가 특권 프로세스(privilege process)에 의해 발생된 시스템 호출 순서 중 비정상적인 시스템 호출을 탐지한 경우 이를 다른 IDS들과 서로 동적으로 공유하여 새로운 침입에 대한 면역력을 향상시킨다.

  • PDF

An Intrusion Detection Method Based on Changes of Antibody Concentration in Immune Response

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.137-150
    • /
    • 2019
  • Although the research of immune-based anomaly detection technology has made some progress, there are still some defects which have not been solved, such as the loophole problem which leads to low detection rate and high false alarm rate, the exponential relationship between training cost of mature detectors and size of self-antigens. This paper proposed an intrusion detection method based on changes of antibody concentration in immune response to improve and solve existing problems of immune based anomaly detection technology. The method introduces blood relative and blood family to classify antibodies and antigens and simulate correlations between antibodies and antigens. Then, the method establishes dynamic evolution models of antigens and antibodies in intrusion detection. In addition, the method determines concentration changes of antibodies in the immune system drawing the experience of cloud model, and divides the risk levels to guide immune responses. Experimental results show that the method has better detection performance and adaptability than traditional methods.