• Title/Summary/Keyword: computer device

Search Result 3,721, Processing Time 0.028 seconds

A Study on the Application of Task Offloading for Real-Time Object Detection in Resource-Constrained Devices (자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.363-370
    • /
    • 2023
  • Object detection technology that accurately recognizes the road and surrounding conditions is a key technology in the field of autonomous driving. In the field of autonomous driving, object detection technology requires real-time performance as well as accuracy of inference services. Task offloading technology should be utilized to apply object detection technology for accuracy and real-time on resource-constrained devices rather than high-performance machines. In this paper, experiments such as performance comparison of task offloading, performance comparison according to input image resolution, and performance comparison according to camera object resolution were conducted and the results were analyzed in relation to the application of task offloading for real-time object detection of autonomous driving in resource-constrained devices. In this experiment, the low-resolution image could derive performance improvement through the application of the task offloading structure, which met the real-time requirements of autonomous driving. The high-resolution image did not meet the real-time requirements for autonomous driving due to the increase in communication time, although there was an improvement in performance. Through these experiments, it was confirmed that object recognition in autonomous driving affects various conditions such as input images and communication environments along with the object recognition model used.

Efficient Stack Smashing Attack Detection Method Using DSLR (DSLR을 이용한 효율적인 스택스매싱 공격탐지 방법)

  • Do Yeong Hwang;Dong-Young Yoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.283-290
    • /
    • 2023
  • With the recent steady development of IoT technology, it is widely used in medical systems and smart TV watches. 66% of software development is developed through language C, which is vulnerable to memory attacks, and acts as a threat to IoT devices using language C. A stack-smashing overflow attack inserts a value larger than the user-defined buffer size, overwriting the area where the return address is stored, preventing the program from operating normally. IoT devices with low memory capacity are vulnerable to stack smashing overflow attacks. In addition, if the existing vaccine program is applied as it is, the IoT device will not operate normally. In order to defend against stack smashing overflow attacks on IoT devices, we used canaries among several detection methods to set conditions with random values, checksum, and DSLR (random storage locations), respectively. Two canaries were placed within the buffer, one in front of the return address, which is the end of the buffer, and the other was stored in a random location in-buffer. This makes it difficult for an attacker to guess the location of a canary stored in a fixed location by storing the canary in a random location because it is easy for an attacker to predict its location. After executing the detection program, after a stack smashing overflow attack occurs, if each condition is satisfied, the program is terminated. The set conditions were combined to create a number of eight cases and tested. Through this, it was found that it is more efficient to use a detection method using DSLR than a detection method using multiple conditions for IoT devices.

Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions

  • Young Hoon Chang;Cheol Min Shin;Hae Dong Lee;Jinbae Park;Jiwoon Jeon;Soo-Jeong Cho;Seung Joo Kang;Jae-Yong Chung;Yu Kyung Jun;Yonghoon Choi;Hyuk Yoon;Young Soo Park;Nayoung Kim;Dong Ho Lee
    • Journal of Gastric Cancer
    • /
    • v.24 no.3
    • /
    • pp.327-340
    • /
    • 2024
  • Purpose: Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy. Materials and Methods: We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296). Results: ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively. Conclusions: ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.

In-Situ Gamma Spectrometry Research Analysis and Radiation Efficiency Sensitivity Evaluation (감마핵종 In-Situ 측정 연구 동향 분석 및 방사능 측정 효율 민감도 평가)

  • Hyun Jun Na;Hyeok Jae Kim;Seong Yeon Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Since a large amount of radioactive waste is expected to be generated due to permanent shutdown of many nuclear power plants, it is necessary to prepare efficient management methods for radioactive waste. Therefore, there is a need for a based study to apply the In-Situ gamma spectrometry, which can simplify the measurement procedure. The purpose of this study is to analyze research cases of In-Situ gamma spectrometry and to analyze the sensitivity of measurement according to influencing factors on In-Situ gamma spectrometry. Research cases of five institutions, including the CERN and the Imperial College Reactor Centre (ICRC), were selected as the institutions to be investigated. Research on the In-Situ gamma spectrometry was conducted on the satisfaction of the acceptance criteria for radioactive waste and the analysis of residual radioactivity in the site. In-Situ Objective Counting System (ISOCS) was used as a major measuring device. Sampling and computer code were used to verify the analysis results. For evaluation of measuring sensitivity according to influencing factors on In-Situ gamma spectrometry, the thickness of the measurement target, the distance between the detector and the target, the angle of the collimator, and the contamination location were performed using ISOCS's Geometry Composer. In every case, based on 122 keV, the efficiency decreased as the energy increased in the high energy region, and the efficiency decreased as the energy decreased in the low energy region. As the target thickness increased, the efficiency decreased, and as the distance between target and detector increased, the efficiency decreased. As the distance between contamination and detector increased, the efficiency decreased, and as the angle of the collimator increased, the measurement efficiency increased. However, when simulating the measurement situation using Geometry Composer, the background is not considered, and the probability of incident in the background increases as the angle increases, so further research needs to be conducted in consideration of these. This study can be utilized when applying the In-Situ gamma spectrometry of radioactive waste clearance in the future.

Analysis of the application of image quality assessment method for mobile tunnel scanning system (이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석)

  • Chulhee Lee;Dongku Kim;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.365-384
    • /
    • 2024
  • The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.

Development of a Device for Estimating the Optimal Artificial Insemination Time of Individually Stalled Sows Using Image Processing (영상처리기법을 이용한 스톨 사육 모돈의 인공수정적기 예측 장치 개발)

  • Kim, D.J.;Yeon, S.C.;Chang, H.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.677-688
    • /
    • 2007
  • 돼지를 포함한 대부분의 동물은 일정한 발정주기를 가지고 일정한 시기에 배란을 하는 자연배란동물이지만, 토끼, 고양이, 밍크 등의 암놈은 교미자극에 의해 배란이 일어나는 유기배란동물이다. 또한 1년에 한 번만 발정하는 단발정동물과 1년에 수차례 발정하는 다발정동물이 있다. 이 중에서 모돈은 1년에 수차례 발정하는 다발정 동물로서 발정기에 들면 비발정기와는 다른 행동을 나타낸다(Diehl 등, 2001). 양돈가의 수익을 최대화하기 위해서는 비생산일수를 최소로 줄여야 한다. 모돈의 비생산일수를 줄일 수 있는 한 가지 방법은 성공적으로 교배를 시키는 것이다. 이처럼 성공적으로 교배를 시키기 위해서는 수정적기를 정확히 예측해야 한다. 만약 수정적기를 정확히 판단하지 못하여 수태가 되지 않으면, 비생산일수가 늘어나 손실을 입게 된다. 따라서 수정적기를 정확히 판단하는 것은 모돈의 성공적인 인공수정에 있어서 중요한 요소이다. 수정적기는 배란이 일어나기 전 10시간에서 12시간 사이이며, 발정이 시작되는 시점을 기준으로 하였을 때 경산돈의 경우 26시간에서 34시간 사이이고 미경산돈의 경우는 18시간에서 26시간 사이이다(Evans 등, 2001). 현재 하루에 두 번 모돈의 발정을 확인하는 것이 일반화되어 있으며, 이 때 웅돈을 접촉시키거나 육안관찰을 통하여 발정 유무를 판단한다. 이러한 방법에는 숙련된 기술과 풍부한 경험이 요구될 뿐만 아니라 총 소요노동력의 30% 정도가 요구된다(Perez 등, 1986). 하루에 두 번밖에 발정을 감지하지 않기 때문에 발정이 언제 시작되었는지를 정확히 알 수 없으며, 또한 발정의 대부분이 새벽에 시작되므로 수정적기를 정확히 판단하기란 매우 어렵다. 만약 발정을 감지했더라도 적기에 인공수정을 하지 못한다면, 수태율이 낮아지므로 경제적 손실이 초래된다. 현재 이러한 문제점 때문에 2회에서 3회에 걸쳐 인공수정을 하고 있으나 이에 따른 소요비용과 소요노동력 등은 양돈가의 부담을 가중시키는 요인이 되고 있다. 돼지는 발정기가 되면 비발정기에 나타내지 않던 외음부의 냄새를 맡는 행동, 귀를 세우는 행동 및 승가허용 행동 등을 나타낸다(Diehl 등, 2001). 또한 돼지는 비발정기에 비하여 발정기에 더 많은 활동량을 나타낸다(Altman, 1941; Erez and Hartsock, 1990). Freson 등(1998)은 스톨에서 개별적으로 사육되고 있는 모돈의 활동량을 적외선센서를 이용하여 측정함으로써 발정을 86%까지 감지하였다고 보고하였다. 그러나 이 연구는 단지 모돈의 발정을 감지하였을 뿐 번식관리에 있어서 가장 중요한 수정적기의 판단 기준을 제시하지 못하였다. 따라서, 본 연구는 스톨에서 사육되는 모돈의 활동량을 측정함으로써 발정시작시각을 감지하고 이를 기준으로 인공수정적기를 예측할 수 있는 인공수정적기 예측 장치를 개발한 후 이의 성능을 농장실증실험을 통하여 시험하고자 수행되었다.

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.

Helicopter Pilot Metaphor for 3D Space Navigation and its implementation using a Joystick (3차원 공간 탐색을 위한 헬리콥터 조종사 메타포어와 그 구현)

  • Kim, Young-Kyoung;Jung, Moon-Ryul;Paik, Doowon;Kim, Dong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The navigation of virtual space comes down to the manipulation of the virtual camera. The movement of the virtual cameras has 6 degrees of freedom. However, input devices such as mouses and joysticks are 2D. So, the movement of the camera that corresponds to the input device is 2D movement at the given moment. Therefore, the 3D movement of the camera can be implemented by means of the combination of 2D and 1D movements of the camera. Many of the virtual space navigation browser use several navigation modes to solve this problem. But, the criteria for distinguishing different modes are not clear, somed of the manipulations in each mode are repeated in other modes, and the kinesthetic correspondence of the input devices is often confusing. Hence the user has difficulty in making correct decisions when navigating the virtual space. To solve this problem, we use a single navigation metaphore in which different modes are organically integrated. In this paper we propose a helicopter pilot metaphor. Using the helicopter pilot metaphore means that the user navigates the virtual space like a pilot of a helicopter flying in space. In this paper, we distinguished six 2D movement spaces of the helicopter: (1) the movement on the horizontal plane, (2) the movement on the vertical plane,k (3) the pitch and yaw rotations about the current position, (4) the roll and pitch rotations about the current position, (5) the horizontal and vertical turning, and (6) the rotation about the target object. The six 3D movement spaces are visualized and displayed as a sequence of auxiliary windows. The user can select the desired movement space simply by jumping from one window to another. The user can select the desired movement by looking at the displaced 2D movement spaces. The movement of the camera in each movement space is controlled by the usual movements of the joystick.

  • PDF

A Design and Implementation of Multimedia Retrieval System based on MAF(Multimedia Application File Format) (MAF(Multimedia Application File Format) 기반 멀티미디어 검색 시스템의 설계 및 구현)

  • Gang Young-Mo;Park Joo-Hyoun;Bang Hyung-Gin;Nang Jong-Ho;Kim Hyung-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.574-584
    • /
    • 2006
  • Recently, ISO/IEC 23000 (also known as 'MPEG-A') has proposed a new file format called 'MAF(Multimedia Application File Format)[1]' which provides a capability of integrating/storing the widely-used compression standards for audio and video and the metadata in MPEG-7 form into a single file format. However, it is still very hard to verify the usefulness of MPEG-A in the real applications because there is still no real system that fully implements this standard. In this thesis, a design and implementation of a multimedia retrieval system based on MPEG-A standard on PC and mobile device is presented. Furthermore, an extension of MPEG-A for describing the metadata for video is also proposed. It is selected and defined as a subset of MPEG-7 MDS[4] and TV-anytime[5] for video that is useful and manageable in the mobile environments. In order to design the multimedia retrieval system based on MPEG-A, we define the system requirements in terms of portability, extensibility, compatibility, adaptability, efficiency. Based on these requirements, we design the system which composed of 3 layers: Application Layer, Middleware Layer, Platform Layer. The proposed system consists of two sub-parts, client-part and server-part. The client-part consists of MAF authoring tool, MAP player tool and MAF searching tool which allow users to create, play and search the MAF files, respectively. The server-part is composed of modules to store and manage the MAF files and metadata extracted from MAF files. We show the usefulness of the proposed system by implementing the client system both on MS-Windows platform on desk-top computer and WIPI platform on mobile phone, and validate whether it to satisfy all the system requirements. The proposed system can be used to verify the specification in the MPEG-A, and to proves the usefulness of MPEG-A in the real application.

Neurotechnologies and civil law issues (뇌신경과학 연구 및 기술에 대한 민사법적 대응)

  • SooJeong Kim
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.2
    • /
    • pp.147-196
    • /
    • 2023
  • Advances in brain science have made it possible to stimulate the brain to treat brain disorder or to connect directly between the neuron activity and an external devices. Non-invasive neurotechnologies already exist, but invasive neurotechnologies can provide more precise stimulation or measure brainwaves more precisely. Nowadays deep brain stimulation (DBS) is recognized as an accepted treatment for Parkinson's disease and essential tremor. In addition DBS has shown a certain positive effect in patients with Alzheimer's disease and depression. Brain-computer interfaces (BCI) are in the clinical stage but help patients in vegetative state can communicate or support rehabilitation for nerve-damaged people. The issue is that the people who need these invasive neurotechnologies are those whose capacity to consent is impaired or who are unable to communicate due to disease or nerve damage, while DBS and BCI operations are highly invasive and require informed consent of patients. Especially in areas where neurotechnology is still in clinical trials, the risks are greater and the benefits are uncertain, so more explanation should be provided to let patients make an informed decision. If the patient is under guardianship, the guardian is able to substitute for the patient's consent, if necessary with the authorization of court. If the patient is not under guardianship and the patient's capacity to consent is impaired or he is unable to express the consent, korean healthcare institution tend to rely on the patient's near relative guardian(de facto guardian) to give consent. But the concept of a de facto guardian is not provided by our civil law system. In the long run, it would be more appropriate to provide that a patient's spouse or next of kin may be authorized to give consent for the patient, if he or she is neither under guardianship nor appointed enduring power of attorney. If the patient was not properly informed of the risks involved in the neurosurgery, he or she may be entitled to compensation of intangible damages. If there is a causal relation between the malpractice and the side effects, the patient may also be able to recover damages for those side effects. In addition, both BCI and DBS involve the implantation of electrodes or microchips in the brain, which are controlled by an external devices. Since implantable medical devices are subject to product liability laws, the patient may be able to sue the manufacturer for damages if the defect caused the adverse effects. Recently, Korea's medical device regulation mandated liability insurance system for implantable medical devices to strengthen consumer protection.