• Title/Summary/Keyword: computer design program

Search Result 1,699, Processing Time 0.029 seconds

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Theoretical Assessment of Flexural Strength of Unbonded FRP Prestressed Concrete Beams (비부착 FRP 프리스트레스트 콘크리트보의 휨내력 이론 산정)

  • Heo, Seo-Young;Lee, Cha-Don;Jeong, Sang-Mo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1045-1048
    • /
    • 2008
  • Fiber reinforced polymer (FRP) usually exhibits inherent brittleness under tensile stress. Application of FRP tendons to concrete beam leads to undesirable flexural behavior due to limited ductility compared to prestressed concrete beam with steel tendons. It has been experimentally observed that partial improvement of flexural behavior can be achieved by releasing FRP tendons' strain by unbonding FRP tendons. In order to estimate and apply the degree of improvement to the design, reasonable yet practical model predicting flexural strength as well as overall flexural behavior of unbonded FRP prestressed concrete beam is needed. In this study, an elaborated model in describing curvature distributions and flexural strength at ultimate stage of unbonded FRP tendons is described. There have been close agreements on the flexural strength of the FRP prestressed concrete beam between the predictions by nonlinear computer program and by the model.

  • PDF

The Lateral Guidance System of an Autonomous Vehicle Using a Neural Network Model of Magneto-Resistive Sensor and Magnetic Fields (자기 저항 센서와 자기장의 신경회로망 모델을 이용한 자율 주행 차량 측 방향 안내 시스템)

  • 손석준;류영재;김의선;임영철;김태곤;이주상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.211-214
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\sub$x/, B$\sub$y/, B$\sub$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, learning itself, and the adequacy of the design controller. Also, the performance of the controller can be verified through simulation.

  • PDF

Behaviour of Leaking Tunnels under Unconfined Flow Condition (비구속 흐름조건하에 있는 배수형 터널의 거동)

  • Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.43-54
    • /
    • 2005
  • Tunnelling in a water bearing soil may cause draw-down of ground water table. Modelling of this problem requires considering the change of phreatic surface including the stress constitutive relationship for an unsaturated soil. However, it is normally assumed that ground water is confined. Numerical formulation of coupled behavior considering phreatic surface is described and implemented into computer program. Influence of unconfined flow on tunnel and ground is thoroughly investigated and compared with that of confined flow condition. It is identified that ground and lining behaviour below phreatic surface is almost the same as that under confined flow conditions, however, there is considerable difference in ground behaviour above phreatic surface. It is generally concluded that the assumption of confined flow is acceptable in terms of lining design.

An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds (철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가)

  • Park, Chul-Soo;Kim, Eun-Jung;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Binding Mode Studies of Indenoisoquinoline Analogues into Human Topoisomerase I-DNA Complex Using Flexible Docking (Human Topoisomerase I-DNA 절개가능 복합체에 대한 Indenoisoquinoline 유도체들의 결합양상 연구)

  • Park, In-Seon;Kim, Bo-Yeon;Kim, Choon-Mi;Choi, Sun
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.228-234
    • /
    • 2009
  • Topoisomerase I (Topo I) participates in the DNA replication, transcription, and repair. Binding of Topo I inhibitor to the Topo I-DNA cleavage complex forms stabilized ternary complex which blocks DNA religation and ultimately causes cell death. Camptothecin (CPT) and its derivatives have been among the most effective anticancer drugs by inhibition of topo I. However, efforts to synthesize non-CPT drugs have been actively going on because the CPT derivatives have several limitations such as poor solubility, short half-life, and side effects. As an indenoisoquinoline, NSC314622 is not as potent as CPT, but its chemical stability and slower reversibility of the cleavage complex made it a good lead compound. Recently, a series of indenoisoquinoline analogues were synthesized with substituted dimethoxy or methylenedioxy on the aromatic ring and alkylamino on the lactam nitrogen. Some of them showed quite good Topo I inhibitory activity. Using the computer docking program, Surflex-Dock, indenoisoquinoline analogues were docked into the human Topo I-DNA cleavable complex. The docking results showed that the compounds with activity better than NSC314622 intercalated between the -1 and +1 base pairs at the cleavage site, but those with little or no activities did not appear to intercalate. These results could be useful to design new Topo I inhibitors improved than CPT.

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Automated Algorithm to Convert Coordinates of Space Representation using IFC-based BIM Data (IFC기반 공간형상정보의 좌표 변환 자동화 알고리즘)

  • Kim, Karam;Yu, Jungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.317-327
    • /
    • 2015
  • Many construction projects have extensively adopted building information modeling (BIM), and various institutions and standards have been developed domestically in Korea. However, the current process that is used to calculate building space area has a significant shortcoming in that there are two different laws to apply the method of measurement considering space boundaries for building element guidelines. For example, space area can be calculated by a polygon, which is modeling using a BIM-based computer aided design program, such that the space polygon is always exported as an inner-edge type. In this paper, we developed an automated algorithm to convert coordinates of space representation using industry foundation classes based BIM data. The proposed algorithm will enable engineers responsible for space management to use a BIM-based model directly in the space programming process without having to do additional work. The proposed process can help ensure that space area is more accurately and reliably.