• Title/Summary/Keyword: computer based estimation

Search Result 1,366, Processing Time 0.058 seconds

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF

Object Recognition of Robot Using 3D RFID System

  • Roh, Se-Gon;Park, Jin-Ho;Lee, Young-Hoon;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.62-67
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.

  • PDF

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

The Study of Video Transcoding and Streaming System Based on Prediction Period

  • Park, Seong-Ho;Kim, Sung-Min;Lee, Hwa-Sei
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Video transcoding is a technique used to convert a compressed input video stream with an arbitrary format, size, and bitrate into a different attribute video stream different attributes to provide a efficient video streaming service for the customers is dispersed in the heterogeneous networks. Specifically, frames deletion occur in a transcoding scheme that exploits the adjustment of frame rate, and at this time, the loss in temporal relation among frames due to frame deletion is compensated for the prediction of motion estimation by reusing motion vectors in the would-be deleted frames. But the processing time for transcoding don't have an improvement as much as our expectation because transcoding is done only within the transcoder. So in this paper, we propose a new transcoding algorithm based on prediction period to improve transcoding-related processing time. For this, we also modify the existing encoder so as to adjust dynamically frame rate based on the prediction period and deletion period of frames. To check how the proposed algorithm works nicely, we implement a video streaming system with the new transcoder and encoder to which it is applied. The result of the performance test shows that the streaming system with proposed algorithm improve 60% above in processing time and also PSNR have a good performance while the quality of pictures is preserved.

Characterization and Detection of Location Spoofing Attacks

  • Lee, Jeong-Heon;Buehrer, R. Michael
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.396-409
    • /
    • 2012
  • With the proliferation of diverse wireless devices, there is an increasing concern about the security of location information which can be spoofed or disrupted by adversaries. This paper investigates the characterization and detection of location spoofing attacks, specifically those which are attempting to falsify (degrade) the position estimate through signal strength based attacks. Since the physical-layer approach identifies and assesses the security risk of position information based solely on using received signal strength (RSS), it is applicable to nearly any practical wireless network. In this paper, we characterize the impact of signal strength and beamforming attacks on range estimates and the resulting position estimate. It is shown that such attacks can be characterized by a scaling factor that biases the individual range estimators either uniformly or selectively. We then identify the more severe types of attacks, and develop an attack detection approach which does not rely on a priori knowledge (either statistical or environmental). The resulting approach, which exploits the dissimilar behavior of two RSS-based estimators when under attack, is shown to be effective at detecting both types of attacks with the detection rate increasing with the severity of the induced location error.

Gaze Detection by Wearable Eye-Tracking and NIR LED-Based Head-Tracking Device Based on SVR

  • Cho, Chul Woo;Lee, Ji Woo;Shin, Kwang Yong;Lee, Eui Chul;Park, Kang Ryoung;Lee, Heekyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.542-552
    • /
    • 2012
  • In this paper, a gaze estimation method is proposed for use with a large-sized display at a distance. Our research has the following four novelties: this is the first study on gaze-tracking for large-sized displays and large Z (viewing) distances; our gaze-tracking accuracy is not affected by head movements since the proposed method tracks the head by using a near infrared camera and an infrared light-emitting diode; the threshold for local binarization of the pupil area is adaptively determined by using a p-tile method based on circular edge detection irrespective of the eyelid or eyelash shadows; and accurate gaze position is calculated by using two support vector regressions without complicated calibrations for the camera, display, and user's eyes, in which the gaze positions and head movements are used as feature values. The root mean square error of gaze detection is calculated as $0.79^{\circ}$ for a 30-inch screen.

New Vehicle Collision Warning Algorithm Based On Fuzzy Logic (퍼지 논리에 기반한 차량 충돌 경보 알고리듬)

  • 김선호;오세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

A Stay Detection Algorithm Using GPS Trajectory and Points of Interest Data

  • Eunchong Koh;Changhoon Lyu;Goya Choi;Kye-Dong Jung;Soonchul Kwon;Chigon Hwang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.176-184
    • /
    • 2023
  • Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.