• Title/Summary/Keyword: computer based estimation

Search Result 1,367, Processing Time 0.033 seconds

Age Estimation via Selecting Discriminated Features and Preserving Geometry

  • Tian, Qing;Sun, Heyang;Ma, Chuang;Cao, Meng;Chu, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1721-1737
    • /
    • 2020
  • Human apparent age estimation has become a popular research topic and attracted great attention in recent years due to its wide applications, such as personal security and law enforcement. To achieve the goal of age estimation, a large number of methods have been pro-posed, where the models derived through the cumulative attribute coding achieve promised performance by preserving the neighbor-similarity of ages. However, these methods afore-mentioned ignore the geometric structure of extracted facial features. Indeed, the geometric structure of data greatly affects the accuracy of prediction. To this end, we propose an age estimation algorithm through joint feature selection and manifold learning paradigms, so-called Feature-selected and Geometry-preserved Least Square Regression (FGLSR). Based on this, our proposed method, compared with the others, not only preserves the geometry structures within facial representations, but also selects the discriminative features. Moreover, a deep learning extension based FGLSR is proposed later, namely Feature selected and Geometry preserved Neural Network (FGNN). Finally, related experiments are conducted on Morph2 and FG-Net datasets for FGLSR and on Morph2 datasets for FGNN. Experimental results testify our method achieve the best performances.

Camera Calibration Method for an Automotive Safety Driving System (자동차 안전운전 보조 시스템에 응용할 수 있는 카메라 캘리브레이션 방법)

  • Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.621-626
    • /
    • 2015
  • This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.

LP-Based SNR Estimation with Low Computation Complexity (낮은 계산 복잡도를 갖는 Linear Prediction 기반의 SNR 추정 기법)

  • Kim, Seon-Ae;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1287-1296
    • /
    • 2009
  • It is very important to estimate the Signal to Noise Ratio(SNR) of received signal in time varying channel state. Most SNR estimation techniques derive the SNR estimates solely from the samples of the received signal after the matched filter. In the severe distorted wireless channel, the performance of these estimators become unstable and degraded. LP-based SNR estimator which can operate on data samples collected at the front-end of a receiver shows more stable performance than other SNR estimator. In this paper, we study an efficient SNR estimation algorithm based on LP and propose a new estimation method to decrease the computation complexity. Proposed algorithm accomplishes the SNR estimation process efficiently because it uses the forward prediction error and its conjugate value during the linear prediction error update. Via the computer simulation, the performance of this proposed estimation method is compared and discussed with other conventional SNR estimators in digital communication channels.

Channel Transfer Function Estimation based on Delay and Doppler Profile for Underwater Acoustic OFDM Communication System

  • Shiho, Oshiro;Tomohisa, Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2023
  • In this paper, we proposed Channel Transfer Function estimation based on Delay and Doppler Profile for underwater acoustic OFDM communication system. It improved the estimation accuracy of the channel transfer function by linear time interpolation the change of Scattered Pilot (SP) insertion frequency in the time direction and the time by Delay and Doppler profile that analyzes the multipath situation of the channel investigated the performance of interpolation by simulation and report it. Previous works is inserted SP every 4 OFDM. It was effective under the environment without multipath, but it has observed that the effect of CTF compensation has been lowered in multipath channel condition. In addition to be better when inserted SP every 2 OFDM. But the amount of sending data will be decrease. Therefore, we conducted research to improve 4 OFDM with new interpolator. A computer simulation was performed as a comparison of SP inserted every 4 OFDM, SP inserted every 2 OFDM, and 4 OFDM with new interpolator. the performance of the proposed system is overwhelmingly improved, and the performance is slightly improved even 64 QAM.

3D Face Tracking using Particle Filter based on MLESAC Motion Estimation (MLESAC 움직임 추정 기반의 파티클 필터를 이용한 3D 얼굴 추적)

  • Sung, Ha-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.883-887
    • /
    • 2010
  • 3D face tracking is one of essential techniques in computer vision such as surveillance, HCI (Human-Computer Interface), Entertainment and etc. However, 3D face tracking demands high computational cost. It is a serious obstacle to applying 3D face tracking to mobile devices which usually have low computing capacity. In this paper, to reduce computational cost of 3D tracking and extend 3D face tracking to mobile devices, an efficient particle filtering method using MLESAC(Maximum Likelihood Estimation SAmple Consensus) motion estimation is proposed. Finally, its speed and performance are evaluated experimentally.

A New Input Estimation Algorithm for Target Tracking Problem

  • Lee, Hungu;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.323-328
    • /
    • 1998
  • In this paper, a new input estimation algorithm is proposed for target tracking problem. The unknown target maneuver is approximated by a linear combination of independent time functions and the coefficients are estimated by using a weighted least-squares estimation technique. The proposed algorithm is verified by computer simulation of a realistic two-dimensional tracking problem. The proposed algorithm provides significant improvements in estimation performance over the conventional input estimation techniques based on the constant-input assumption.

  • PDF

Intelligent mobile Robot with RSSI based Indoor Location Estimation function (RSSI기반 위치인식기능 지능형 실내 자율 이동로봇)

  • Yoon, Ba-Da;Shin, Jae-Wook;Kim, Seong-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.449-452
    • /
    • 2007
  • An intelligent robot with RSSI based indoor location estimation function was designed and implemented. A wireless sensor node was attached to the robot to received the location data from the indoor location estimation function. Spartan III was used as the main control device in the mobile robot. The current location data collected from the indoor location estimation system was transferred to the mobile robot and server through Zigbee/IEEE 802.15.4 wireless communication of the sensor node. Once the location data is received, the sensor node senses the direction of the robot head and directs the robot to move to its destination. Indoor location estimation intelligent robot is able to move efficiently and actively to the user appointed location by implementing the proposed obstacles avoidance algorithm. This system is able to monitor real-time environmental data and location of the robot using PC program. Indoor location estimation intelligent robot also can be controlled by executing the instructions sent from the PC program.

  • PDF

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

Fuzzy rule-based Hand Motion Estimation for A 6 Dimensional Spatial Tracker

  • Lee, Sang-Hoon;Kim, Hyun-Seok;Suh, Il-Hong;Park, Myung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.82-86
    • /
    • 2004
  • A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.

  • PDF