• Title/Summary/Keyword: computer based estimation

Search Result 1,367, Processing Time 0.025 seconds

An Electronic Domain Chromatic Dispersion Monitoring Scheme Insensitive to OSNR Using Kurtosis

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Chung, Won-Zoo;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper we present an electronic domain solution for chromatic dispersion (CD) monitoring algorithm based on the estimated time domain channel in electronic domain using channel estimation methods. The proposed scheme utilizes kurtosis as a CD measurement, directly computed from the estimated inter-symbol-interference (ISI) channel due to the CD distortion. Hence, the proposed scheme exhibits robust performance under OSNR variation, in contrast to the existing electronic domain approach based on minimum mean squared error (MMSE) fractionally-spaced equalizer taps [1]. The simulation results verify the CD monitoring ability of the proposed scheme.

Real-time Projectile Motion Trajectory Estimation Considering Air Resistance of Obliquely Thrown Object Using Recursive Least Squares Estimation (비스듬히 던진 물체의 공기저항을 고려한 재귀 최소 자승법 기반 실시간 포물선 운동 궤적 추정)

  • Jeong, Sangyoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.427-432
    • /
    • 2018
  • This paper uses a recursive least squares method to estimate the projectile motion trajectory of an object in real time. The equations of motion of the object are obtained considering the air resistance which occurs in the actual experiment environment. Because these equations consider air resistance, parameter estimation of nonlinear terms is required. However, nonlinear recursive least squares estimation is not suitable for estimating trajectory of projectile in that it requires a lot of computation time. Therefore, parameter estimation for real-time trajectory prediction is performed by recursive least square estimation after using Taylor series expansion to approximate nonlinear terms to polynomials. The proposed method is verified through experiments by using VICON Bonita motion capture system which can get three dimensional coordinates of projectile. The results indicate that proposed method is more accurate than linear Kalman filter method based on the equations of motion of projectile that does not consider air resistance.

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

Motion Estimation Using Feature Matching and Strongly Coupled Recurrent Module Fusion (특징정합과 순환적 모듈융합에 의한 움직임 추정)

  • 심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.59-71
    • /
    • 1994
  • This paper proposes a motion estimation method in video sequences based on the feature based matching and anistropic propagation. It measures translation and rotation parameters using a relaxation scheme at feature points and object orinted anistropic propagation in continuous and discontinuous regions. Also an iterative improvement motion extimation based on the strongly coupled module fusion and adaptive smoothing is proposed. Computer simulation results show the effectiveness of the proposed algorithm.

  • PDF

Two Techniques of Angle-of-Arrival Estimation for Low-Data-Rate UWB Wireless Positioning (저속 초광대역 방식의 무선 측위에 알맞은 신호 도착 방향 추정 기법 두 가지)

  • Lee, Yong-Up;Lim, Kyeong-Sun;Park, Joo-Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.163-171
    • /
    • 2012
  • The signal model and weighted-average based estimation techniques are proposed to estimate the angle-of-arrival (AOA) parameters of multiple clusters for a low data rate ultrawide band (LR-UWB) based wireless positioning system. It is observed that the weighted-average based AOA estimation technique gives an optimal AOA estimate under few clusters condition, and the average based AOA estimation technique gives a correct AOA estimate under many clusters condition through computer simulation. Also, we can observe that the variance estimation error decreases as SNR increases, and the proposed techniques are superior to the conventional technique from the viewpoint of performance.

Sum of Squares-Based Range Estimation of an Object Using a Single Camera via Scale Factor

  • Kim, Won-Hee;Kim, Cheol-Joong;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2359-2364
    • /
    • 2017
  • This paper proposes a scale factor based range estimation method using a sum of squares (SOS) method. Many previous studies measured distance by using a camera, which usually required two cameras and a long computation time for image processing. To overcome these disadvantages, we propose a range estimation method for an object using a single moving camera. A SOS-based Luenberger observer is proposed to estimate the range on the basis of the Euclidean geometry of the object. By using a scale factor, the proposed method can realize a faster operation speed compared with the previous methods. The validity of the proposed method is verified through simulation results.

GA-Based Fuzzy Kalman Filter for Tracking the Maneuvering Target

  • Noh, Sun-Young;Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1500-1504
    • /
    • 2005
  • This paper proposes the design methodology of genetic algorithm (GA)-based fuzzy Kalman filter for tracking the maneuvering target. The performance of the standard Kalman Filter (SKF) has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, we use the method to estimate the increment of acceleration by a fuzzy system using the relation between maneuver filter residual and non-maneuvering one. To optimize the fuzzy system, a genetic algorithm (GA) is utilized and this is then tuned by the fuzzy logic correction. Finally, the tracking performance of the proposed method has been compared with those of the input estimation (IE) technique and the intelligent input estimation (IIE) through computer simulations.

  • PDF

Range image reconstruction based on multiresolution surface parameter estimation (다해상도 면 파라미터 추정을 이용한 거리영상 복원)

  • 장인수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.58-66
    • /
    • 1997
  • This paper proposes a multiresolution surface parameter estimation method for range images. Based on robust estimation of surface parameters, it approximates a patch to a planar surface in the locally adaptive window. Selection of resolution is made pixelwise by comparing a locally computed homogeneity measure with th eglobal threshold determined by te distribution of the approximation error. The proposed multiresolution surface parameter estimation method is applied to range image reconstruction. Computer simulation results with noisy rnag eimages contaminated by additive gaussian noise and impulse noise show that the proposed multiresolution reconstruction method well preserves step and roof edges compared with the conventional methods. Also the segmentation method based on the estimated surface parameters is shown to be robust to noise.

  • PDF

Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning (앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정)

  • Huy Tran, Quoc Bao;Park, JongHyeon;Chung, SunTae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

Development of Vision System Model for Manipulator's Assemble task (매니퓰레이터의 조립작업을 위한 비젼시스템 모델 개발)

  • 장완식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1997
  • This paper presents the development of real-time estimation and control details for a computer vision-based robot control method. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes know 4-axis Scorbot manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method. The method is tested experimentally in two ways : First the validity of estimation model is tested by using the self-built test model. Second, the practicality of the presented control method is verified in performing 4-axis manipulator's assembly task. These results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as deburring and welding.

  • PDF