• Title/Summary/Keyword: computed tomography image

Search Result 966, Processing Time 0.018 seconds

Evaluation of Noise Level and Blind Quality in CT Images using Advanced Modeled Iterative Reconstruction (ADMIRE) (고급 모델 반복 재구성법 (ADMIRE)을 사용한 CT 영상에서의 노이즈 레벨 및 블라인드 화질 평가)

  • Shim, Jina;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • One of the typical methods for lowering radiation dose while maintaining image quality of computed tomography (CT) is the use of model-based iterative reconstruction (MBIR). This study is to evaluate the image quality by adjusting the strength of the advanced modeled iterative reconstruction (ADMIRE), which is well known as a representative model of MBIR. The study was conducted using phantom, and CT images were obtained while adjusting the strength of ADMIRE in units of 1 to 5. Quantitative evaluation includes noise levels using coefficient of variation (COV) and contrast to noise ratio (CNR), as well as natural image quality evaluation (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE). As a result, in both noise level and blind quality evaluation results, the higher the strength of ADMIRE, the better the results were derived. In particular, it was confirmed that COV and CNR were improved 1.89 and 1.75 times at ADMIRE 5 compared to ADMIRE 1, respectively, and NIQE and BRISQUE were proved to be improved 1.35 and 1.22 times at ADMIRE 5 compared to ADMIRE 1, respectively. In conclusion, this study was proved that the reconstruction strength of ADMIRE had a great influence on the noise level and overall image quality evaluation of CT images.

Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

  • Oliveira, Matheus L.;Tosoni, Guilherme M.;Lindsey, David H.;Mendoza, Kristopher;Tetradis, Sotirios;Mallya, Sanjay M.
    • Imaging Science in Dentistry
    • /
    • v.44 no.4
    • /
    • pp.279-285
    • /
    • 2014
  • Purpose: To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods: Tubes containing solutions with different concentrations of $K_2HPO_4$ were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the $K_2HPO_4$ solutions were measured. The relationship between CT number and $K_2HPO_4$ concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results: The relationship between $K_2HPO_4$ concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion: There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

A Study on the Diagnosis of Urinary Stone Location by Abdominal Positioning Variations (요로결석 위치 진단에 대한 복부자세 변화에 따른 연구)

  • Kim, Dong-Jin;Chae, Jong-Sang;Yoo, Chae-Min;Lee, Bae-Won
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • Patients who visit the emergency room with urinary stones have difficulty lying down in a supine position due to severe pain when performing the KUB test. The purpose of this study was to find methods to reduce the patients' pain and image distortion, and obtain medical images with high diagnostic values. After checking the standard classification of disease and cause of death, the target group consisted of 121 patients who had clearly distinguished stones from computed tomography. Patients with stones in the ureteralvesical junction were excluded. Qualitative image evaluation was performed by confirming the location of the stone in the computed tomography images. and evaluated the rate of visual discrimination of stones possible through KUB and abdominal plain X-ray. Quantitative image evaluation was performed on the KUB, abdominal plain X-ray images. The transverse process of the first lumbar vertebrae served as the standard point, and the length from this point to the lower part of the stone was measured. Results from looking at the rate of visual discrimination of stones possible through KUB and abdominal plain X-ray showed: 94 patients (77.6%) for KUB images and 91 patients (75.2%) for computed tomography images. The standard deviation for KUB and abdominal X-ray was 3 (2.4%). Comparing and analyzing the location from KUB images and abdominal plain X-ray images, the stone position was 10.1 mm in the kidney, 10.5 mm in the ureteropelvic junction, and 9.7 mm in the ureters. It was shown that the stone moved 10 mm on average with significant statistical difference (P<0.05). In cases where the pain is so severe that it is impossible to perform the test in the supine position, an alternative may be to check the stone position by performing a modified KUB test by having the patient stand in a vertical position. In the future, this will provide convenience to both the examiner and the patient when performing the examination, and it will contribute with its reproducibility.

Evaluation of Performance and No-reference-based Quality for CT Image with ADMIRE Iterative Reconstruction Parameters: A Pilot Study (ADMIRE 반복적 재구성 파라메터에 따른 CT 영상의 특성 및 무참조 기반 화질 평가: 선행연구)

  • Bo-Min Park;Yoo-Jin Seo;Seong-Hyeon Kang;Jina Shim;Hajin Kim;Sewon Lim;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.175-182
    • /
    • 2024
  • Advanced modeled iterative reconstruction (ADMIRE) represents a repetitive reconstruction method that can adjust strength and kernel, each of which are known to affect computed tomography (CT) image quality. The aim of this study was to quantitatively analyze the noise and spatial resolution of CT images according to ADMIRE control factors. Patient images were obtained by applying ADMIRE strength 2 and 3, and kernel B40 and B59. For quantitative evaluations, the noise level, spatial resolution, and overall image quality were measured using coefficient of variation (COV), edge rise distance (ERD), and natural image quality evaluation (NIQE). The superior values for the average COV, ERD, and NIQE results were obtained for the ADMIRE reconstruction conditions of ADMIRE 2 + B40, ADMIRE 3 + B59, and ADMIRE3 + B59. NIQE, which represents the overall image quality based on no-reference, was about 6.04 when using ADMIRE 3 + B59, showing the best result among the reconstructed image acquisition conditions. The results of this study indicate that the ADMIRE strength and kernel chosen for use in ADMIRE reconstruction have a significant impact on CT image quality. This highlights the importance of adjusting to the control factors in consideration of the clinical environment.

Characterization of mandibular molar root and canal morphology using cone beam computed tomography and its variability in Belgian and Chilean population samples

  • Torres, Andres;Jacobs, Reinhilde;Lambrechts, Paul;Brizuela, Claudia;Cabrera, Carolina;Concha, Guillermo;Pedemonte, Maria Eugenia
    • Imaging Science in Dentistry
    • /
    • v.45 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: This study used cone-beam computed tomography (CBCT) to characterize mandibular molar root and canal morphology and its variability in Belgian and Chilean population samples. Materials and Methods: We analyzed the CBCT images of 515 mandibular molars (257 from Belgium and 258 from Chile). Molars meeting the inclusion criteria were analyzed to determine (1) the number of roots; (2) the root canal configuration; (3) the presence of a curved canal in the cross-sectional image of the distal root in the mandibular first molar and (4) the presence of a C-shaped canal in the second mandibular molar. A descriptive analysis was performed. The association between national origin and the presence of a curved or C-shaped canal was evaluated using the chi-squared test. Results: The most common configurations in the mesial root of both molars were type V and type III. In the distal root, type I canal configuration was the most common. Curvature in the cross-sectional image was found in 25% of the distal canals of the mandibular first molars in the Belgian population, compared to 11% in the Chilean population. The prevalence of C-shaped canals was 10% or less in both populations. Conclusion: In cases of unclear or complex root and canal morphology in the mandibular molars, CBCT imaging might assist endodontic specialists in making an accurate diagnosis and in treatment planning.

Effect of slice inclination and object position within the field of view on the measurement accuracy of potential implant sites on cone-beam computed tomography

  • Saberi, Bardia Vadiati;Khosravifard, Negar;Nourzadeh, Alireza
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the accuracy of linear measurements in the horizontal and vertical dimensions based on object position and slice inclination in cone-beam computed tomography (CBCT) images. Materials and Methods: Ten dry sheep hemi-mandibles, each with 4 sites (incisor, canine, premolar, and molar), were evaluated when either centrally or peripherally positioned within the field of view (FOV) with the image slices subjected to either oblique or orthogonal inclinations. Four types of images were created of each region: central/cross-sectional, central/coronal, peripheral/cross-sectional, and peripheral/coronal. The horizontal and vertical dimensions were measured for each region of each image type. Direct measurements of each region were obtained using a digital caliper in both horizontal and vertical dimensions. CBCT and direct measurements were compared using the Bland-Altman plot method. P values <0.05 were considered to indicate statistical significance. Results: The buccolingual dimension of the incisor and premolar areas and the height of the incisor, canine, and molar areas showed statistically significant differences on the peripheral/coronal images compared to the direct measurements (P<0.05). Molar area height in the central/coronal slices also differed significantly from the direct measurements (P<0.05). Cross-sectional images of either the central or peripheral position had no marked difference from the gold-standard values, indicating sufficient accuracy. Conclusion: Peripheral object positioning within the FOV in combination with applying an orthogonal inclination to the slices resulted in significant inaccuracies in the horizontal and vertical measurements. The most undesirable effect was observed in the molar area and the vertical dimension.

Image characteristics of cone beam computed tomography using a CT performance phantom (CT performance phantom을 이용한 cone beam형 전산화단층영상의 특성)

  • Han, Choong-Wan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Purpose: To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Materials and Methods: Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR $9000N^{TM}$ dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. Results: CT number of both PSR $9000N^{TM}$ dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR $9000N^{TM}$ dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR $9000N^{TM}$ dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR $9000N^{TM}$ dental CT system and i-CAT CBCT. Conclusion: CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics.

  • PDF

An Estimate of Image Quality and Radiation Doses of Coronary Artery in MDCT Using Prospective and Retrospective ECG Gating Scan Mode (MDCT 관상동맥 조영 검사에서 전향적 동조화 및 후향적 동조화 기법의 화질과 선량 관계)

  • Oh, Jong-Kap
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.315-321
    • /
    • 2011
  • The goal of this study is to reduce patient exposure dose by providing image quality and radiation dose according to inspection methods. Volume Computed Tomography Dose Index(CTDIvol) and Dose Length Product(DLP) of prospective and retrospective ECG gating snapshot segment of Coronary CT angiography(CTA) were measured each snapshot segment methods. CT number, noise, uniformity, and resolution were also measured using phantom under the same condition of coronary CTA. The results showed that CT number, noise, uniformity and resolution are similar to each other. In terms of CTDIvol and DLP, however, measurement dose of prospective ECG gating snapshot segment was lower than the retrospective case by 37.5% and 40.3%. Therefore, it is highly recommended that in the coronary CTA, prospective ECG gating scan mode should be chosen to reduce patient dose.