• Title/Summary/Keyword: computational-platform

Search Result 317, Processing Time 0.023 seconds

A Computational Platform for Nonlinear Analysis of Prestressed Concrete Shell Structures

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.593-606
    • /
    • 2010
  • This paper presents a formulation to include the prestressing effects in available numerical models for the nonlinear material, instantaneous and long-term analysis of prestressed concrete shell structures, based on the displacement formulation of the finite element method. A four-node flat shell element is adopted for nonlinear analysis of prestressed concrete shells. This element was incorporated into an existing general-purpose finite element analysis program. A distinctive characteristic of the element is its capability to simulate the behavior of shells subjected to a variety of types of loading and drilling rotational stiffness. Consequently, the response of prestressed concrete shell structures can be predicted accurately using the proposed nonlinear finite element procedure.

Development of Structural Analysis Platform through Internet-based Technology Using Component Models (컴포넌트 모델을 이용한 인터넷 기반 구조해석 플랫폼 개발)

  • Shin Soo-Bong;Park Hun-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.161-169
    • /
    • 2006
  • The study proposes component models in developing an efficient platform for internet-based structural analysis. Since a structural analysis requires an operation of complicated algorithms, a client-side computation using X-Internet is preferred to a server-side computation to provide a flexible service for multi-users. To compete with the user-friendly interfaces of available commercial analysis programs, a window-based interface using Smart Client was applied. Also, component-based programming was performed with the considerations on reusability and expandability so that active Preparation for future change or modification could be feasible. The components describe the whole system by subdivision and simplification. In the relationship between upper-and lower-level components and also in the relationship between components and objects, a unified interface was used to clearly classify the connection between the libraries. By performing data communication between different types of platforms using XML WebService, a conner-stone of data transfer is proposed for the future integrated CAE. The efficiency of the developed platform has been examined through a sample structural analysis and design on planar truss structures.

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

Development of Pre- and Post-processing System for Supercomputing-based Large-scale Structural Analysis (슈퍼컴퓨팅 기반의 대규모 구조해석을 위한 전/후처리 시스템 개발)

  • Kim, Jae-Sung;Lee, Sang-Min;Lee, Jae-Yeol;Jeong, Hee-Seok;Lee, Seung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • The requirements for computational resources to perform the structural analysis are increasing rapidly. The size of the current analysis problems that are required from practical industry is typically large-scale with more than millions degrees of freedom (DOFs). These large-scale analysis problems result in the requirements of high-performance analysis codes as well as hardware systems such as supercomputer systems or cluster systems. In this paper, the pre- and post-processing system for supercomputing based large-scale structural analysis is presented. The proposed system has 3-tier architecture and three main components; geometry viewer, pre-/post-processor and supercomputing manager. To analyze large-scale problems, the ADVENTURE solid solver was adopted as a general-purpose finite element solver and the supercomputer named 'tachyon' was adopted as a parallel computational platform. The problem solving performance and scalability of this structural analysis system is demonstrated by illustrative examples with different sizes of degrees of freedom.

An Easy-to-Use Three-Dimensional Molecular Visualization and Analysis Program: POSMOL

  • Lee, Sang-Joo;Chung, Hae-Yong;Kim, Kwang S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1061-1064
    • /
    • 2004
  • Molecular visualization software has the common objective of manipulation and interpretation of data from numerical simulations. They visualize many complicated molecular structures with personal computer and workstation, to help analyze a large quantity of data produced by various computational methods. However, users are often discouraged from using these tools for visualization and analysis due to the difficult and complicated user interface. In this regard, we have developed an easy-to-use three-dimensional molecular visualization and analysis program named POSMOL. This has been developed on the Microsoft Windows platform for the easy and convenient user environment, as a compact program which reads outputs from various computational chemistry software without editing or changing data. The program animates vibration modes which are needed for locating minima and transition states in computational chemistry, draws two and three dimensional (2D and 3D) views of molecular orbitals (including their atomic orbital components and these partial sums) together with molecular systems, measures various geometrical parameters, and edits molecules and molecular structures.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Opportunities and prospects for personalizing the user interface of the educational platform in accordance with the personality psychotypes

  • Chemerys, Hanna Yu.;Ponomarenko, Olga V.
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The article is devoted to the actual problem of studying the possibilities of implementing personalization of the user interface in accordance with the personality psychotypes. The psychological aspect of user interface design tools is studied and the correspondence of their application to the manifestations of personality psychotypes is established. The results of the distribu-tion of attention of users of these categories on the course page of the educational platform are presented and the distribution of attention in accordance with the focus on educational material is analyzed. Individual features and personal preferences regarding the used design tools are described, namely the use of accent colors in interface design, the application of the prin-ciples of typographic hierarchy, and so on. In accordance with this, the prospects for implementing personalization of the user interface of the educational platform are described. The results of the study allow us to state the relevance of developing and applying personalization of the user interface of an educational platform to improve learning outcomes in accordance with the psychological impact of individual design tools, and taking into account certain features of user categories. The research is devoted to the study of user attention concentration using heatmaps, in particular based on eyetreking technology, we will investigate the distribution of user attention on the course page of an educational platform Ta redistribution of atten-tion in accordance with certain categories of personality psychotypes. The results of the study can be used to rearrange the LMS Moodle interface according to the user's psychotype to achieve the best concentration on the training material. The obtained data are the basis for developing effective user interfaces for personalizing educational platforms to improve the quality of the education.

Exploring the experience of AI education platform using ARCS model for elementary school pre-service teachers (초등 예비교사를 위한 ARCS 모델 활용 인공지능 교육 플랫폼 경험 탐구)

  • Sung, Younghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.199-204
    • /
    • 2021
  • Along with the development of technology in the fourth industrial revolution, the fields that can apply artificial intelligence technology are rapidly increasing. In order to improve computational thinking, overseas countries such as the U.S. and the U.K. are already using various AI education platforms to provide artificial intelligence education. Therefore, there is an increasing need for elementary school pre-service teachers in Korea to strengthen their AI education capabilities along with the existing software education. However, it may be difficult for learners with low levels of programming experience and AI education experience to choose an AI education platform that can sustain their learning motivation. Therefore, in this study, the factors related to learning motivation in the AI education platform were explored using the ARCS model. Through this, we present the factors required by the AI education platform for motivation and sustain of learning.

  • PDF