• 제목/요약/키워드: computational tools

검색결과 518건 처리시간 0.022초

Prediction and Analysis of Breast Cancer Related Deleterious Non-Synonymous Single Nucleotide Polymorphisms in the PTEN Gene

  • Naidu, C Kumaraswamy;Suneetha, Y
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2199-2203
    • /
    • 2016
  • One of the most common cancer types faced by the women around the world is breast cancer. Among the several low, moderate and high penetrance genes conferring susceptibility to breast cancer, PTEN is one which is known to be mutated in many tumor types. In this study, we predicted and analyzed the impact of three deleterious coding non-synonymous single nucleotide polymorphisms rs121909218 (G129E), rs121909229 (R130Q) and rs57374291 (D107N) in the PTEN gene on the phenotype of breast tumors using computational tools SIFT, Polyphen-2, PROVEAN, MUPro, POPMusic and the GETAREA server.

해양 수직 파일(Vertical Pile)에 작용하는 환경 하중하의 응력 해석 기법 비교 (Comparison of stress analysis tools for ocean vertical pile under environmental loads)

  • 조철희;김병환;김두홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.121-127
    • /
    • 2001
  • To investigate the stability and integrity of offshore structures, it is necessary to estimates the significant ocean environmental loadings. They include hydrostatic pressure, wind, wave, current, tide, ice, earthquake, temperature, marine growth and scouring. Waves are of major importance among them because of the large forces acting on submerged parts of the structure caused by accompanying water motions. For the comparison of stress and deflection analysis tools, a vertical pile is applied under environmental loads. The analysis is concerned with SACS(Structural Analysis Computer System), ANSYS and C program. SACS and C program have nearly the same results but not ANSYS. This study shows the comparison of results obtained from 3 different approaches.

  • PDF

복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템 (An Integrated CAD System for FEA-based Design of Heterogeneous Objects)

  • 신기훈;김주한
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.328-338
    • /
    • 2005
  • CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

Genome data mining for everyone

  • Lee, Gir-Won;Kim, Sang-Soo
    • BMB Reports
    • /
    • 제41권11호
    • /
    • pp.757-764
    • /
    • 2008
  • The genomic sequences of a huge number of species have been determined. Typically, these genome sequences and the associated annotation data are accessed through Internet-based genome browsers that offer a user-friendly interface. Intelligent use of the data should expedite biological knowledge discovery. Such activity is collectively called data mining and involves queries that can be simple, complex, and even combinational. Various tools have been developed to make genome data mining available to computational and experimental biologists alike. In this mini-review, some tools that have proven successful will be introduced along with examples taken from published reports.

Development of educational software for beam loading analysis using pen-based user interfaces

  • Suh, Yong S.
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.67-77
    • /
    • 2014
  • Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the solution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions. Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solving the problems.

CT 기반 역량 검사도구 개발을 위한 탐색 개관 (An Overview of Exploration for the Development of Competencies Assessment Tools based Computational Thinking)

  • 김동만;이태욱
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.415-416
    • /
    • 2019
  • 이 연구의 목적은 기존 CT 검사 도구를 확인하여 한계를 파악하고, CT 기반 역량의 의미를 밝히고 이를 통해 올바른 CT 검사도구 개발의 방향을 제시하는 것이다. 그래서 이 연구로 CT 기반 스킬을 통해 CT 역량을 검사할 수 있는 방법을 제시하였다. 이 연구의 결론으로 CT 역량을 검사하는 것은 CT 기반 역량을 검사하는 것으로 CT 기반 하드스킬을 밝혀내어 이를 평가 요소로 적용한다면, 기존 검사도구의 한계를 극복하는 묘책이 될 것으로 판단되었다. 이 연구의 후속으로 CT 기반의 하드 스킬을 찾아 CT 기반 역량을 명확히 규명하고, 이를 바탕으로 검사도구를 개발하여 검증하고자 한다.

  • PDF

Fitting acyclic phase-type distributions by orthogonal distance

  • Pulungan, Reza;Hermanns, Holger
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.37-56
    • /
    • 2022
  • Phase-type distributions are the distributions of the time to absorption in finite and absorbing Markov chains. They generalize, while at the same time, retain the tractability of the exponential distributions and their family. They are widely used as stochastic models from queuing theory, reliability, dependability, and forecasting, to computer networks, security, and computational design. The ability to fit phase-type distributions to intractable or empirical distributions is, therefore, highly desirable for many practical purposes. Many methods and tools currently exist for this fitting problem. In this paper, we present the results of our investigation on using orthogonal-distance fitting as a method for fitting phase-type distributions, together with a comparison to the currently existing fitting methods and tools.

플랙시블 제조시스템의 부품배분계획에 관한 최적화 해석 (Optimum Analysis of Part Assignment Problem for Flexible Manufacturing System)

  • 인견승인;최정희
    • 대한산업공학회지
    • /
    • 제18권1호
    • /
    • pp.169-176
    • /
    • 1992
  • In parts assignment problem for FMS, both the parts and the tools required to process the parts are assigned to the machine tools for a specified planning period. This is an important decision-making problem for a short-term production planning of FMS. In this paper, parts assignment problem for FMS was analyzed to determine the optimal plan which has the adaptability to production fluctuation. A mathematical model was developed for determing the parts and the tools required for the machine tools which compose FMS, and the model was analyzed to obtain optimal solution. In addition, the vality and feasibility of the computational algorithm was examined by solving a numerical example.

  • PDF

기계부품들의 조립 및 해체과정 설계를 위한 스크류이론의 응용 (An Application of Screw Motions for Mechanical Assemblies)

  • 김재정
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.60-67
    • /
    • 1997
  • CAD systems offer a variety of techniques for designing and rendering models of static 3D objects and even of mechanisms, but relatively few tools exist for interactively specifying arbitrary movements of rigid bodies through space. Such tools are essential, not only for artistic animation, but also, for planning and demonstrating assembly and disassembly procedure of manufactured products. A rigid body motion is a continuous mapping from the time domain to a set of positions. To relieve the designers from the burden of specifying this mapping in abstract mathematical terms, combinations of simple rigid motion primitives, such as linear translations or constant axis rotations, are often used. These simple motions are planar and thus ill-suited for approximating arbitrary motions in 3D-space. Instead, we propose the screw motion primitive, a special combination of linear translations and constant axis rotations, which has a simple geometric representation that can be automatically and unambiguously computed from the starting and ending positions of the moving body. Although, any two positions may be interpolated by an infinity of motions, we chose the screw motion for its relative generality and its computational advantages. The paper covers original algorithms for computing the screw motions from interpolated positions and envelopes of swept regions to predict collisions.

  • PDF

Effective Methods for Heart Disease Detection via ECG Analyses

  • Yavorsky, Andrii;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.127-134
    • /
    • 2022
  • Generally developed for medical testing, electrocardiogram (ECG) recordings seizure the cardiac electrical signals from the surface of the body. ECG study can consequently be a vital first step to support analyze, comprehend, and expect cardiac ailments accountable for 31% of deaths globally. Different tools are used to analyze ECG signals based on computational methods, and explicitly machine learning method. In all abovementioned computational simulations are prevailing tools for cataloging and clustering. This review demonstrates the different effective methods for heart disease based on computational methods for ECG analysis. The accuracy in machine learning and three-dimensional computer simulations, among medical inferences and contributions to medical developments. In the first part the classification and the methods developed to get data and cataloging between standard and abnormal cardiac activity. The second part emphases on patient analysis from entire ECG recordings due to different kind of diseases present. The last part represents the application of wearable devices and interpretation of computer simulated results. Conclusively, the discussion part plans the challenges of ECG investigation and offers a serious valuation of the approaches offered. Different approaches described in this review are a sturdy asset for medicinal encounters and their transformation to the medical world can lead to auspicious developments.