• Title/Summary/Keyword: computational solutions

Search Result 1,335, Processing Time 0.027 seconds

Generalized Sigmidal Basis Function for Improving the Learning Performance fo Multilayer Perceptrons (다층 퍼셉트론의 학습 성능 개선을 위한 일반화된 시그모이드 베이시스 함수)

  • Park, Hye-Yeong;Lee, Gwan-Yong;Lee, Il-Byeong;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1261-1269
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

Orientational Relationship Between the Solid-Electrolyte Interphase and Li4Ti5O12 Electrode in Hybrid Aqueous Electrolytes

  • Tae-Young Ahn;Eunji Yoo;Dongkyu Kim;Jae-Seong Yeo;Junghun Lee;Miseon Park;Wonjun Ahn;Hyeyoung Shin;Yusong Choi
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.476-483
    • /
    • 2024
  • Lithium-ion (Li-ion) batteries are essential to modern society, but pose safety risks because of thermal runaway and ignition. This study explores the use of hybrid aqueous electrolytes to enhance the safety and performance of Li-ion batteries, focusing on the solid-electrolyte interface (SEI) formed on lithium titanate (Li4Ti5O12; LTO) electrodes. We employed high-resolution transmission electron microscopy (HRTEM) and density functional theory (DFT) calculations to analyze the microstructure and stability of the SEI layer. Further, we prepared LTO and LiMn2O4 (LMO) electrodes, assembled full cells with hybrid aqueous electrolytes, and carried out electrochemical testing. The HRTEM analysis revealed the epitaxial growth of a LiF SEI layer on the LTO electrode, which has a coherent lattice structure that enhances electrochemical stability. The DFT calculations confirmed the energetic favorability of the LiF-LTO interface, indicating strong adhesion and potential for epitaxial growth. The full cell demonstrated excellent discharge performance, showing a notable improvement in coulombic efficiency after the initial cycle and sustained capacity over 100 cycles. Notably, the formation of a dense, crystalline LiF SEI layer on the LTO electrode is crucial for preventing continuous side reactions and maintaining mechanical stability during cycling. The experimental results, supported by the DFT results, highlight the importance of the orientational relationship between the SEI and the electrode in improving battery performance. The integration of experimental techniques and computational simulations has led to the development of an LTO/LMO full cell with enhanced discharge capabilities and stability. This study provides insights into the growth mechanisms of the SEI layer and its impact on battery performance, demonstrating the potential of hybrid aqueous electrolytes in advancing lithium-ion battery technology. The findings affirm the viability of this approach for optimizing next-generation Li-ion batteries, which can promote the development of safer and more reliable energy storage solutions.

Adaptive Data Hiding Techniques for Secure Communication of Images (영상 보안통신을 위한 적응적인 데이터 은닉 기술)

  • 서영호;김수민;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.664-672
    • /
    • 2004
  • Widespread popularity of wireless data communication devices, coupled with the availability of higher bandwidths, has led to an increased user demand for content-rich media such as images and videos. Since such content often tends to be private, sensitive, or paid for, there exists a requirement for securing such communication. However, solutions that rely only on traditional compute-intensive security mechanisms are unsuitable for resource-constrained wireless and embedded devices. In this paper, we propose a selective partial image encryption scheme for image data hiding , which enables highly efficient secure communication of image data to and from resource constrained wireless devices. The encryption scheme is invoked during the image compression process, with the encryption being performed between the quantizer and the entropy coder stages. Three data selection schemes are proposed: subband selection, data bit selection and random selection. We show that these schemes make secure communication of images feasible for constrained embed-ded devices. In addition we demonstrate how these schemes can be dynamically configured to trade-off the amount of ded devices. In addition we demonstrate how these schemes can be dynamically configured to trade-off the amount of data hiding achieved with the computation requirements imposed on the wireless devices. Experiments conducted on over 500 test images reveal that, by using our techniques, the fraction of data to be encrypted with our scheme varies between 0.0244% and 0.39% of the original image size. The peak signal to noise ratios (PSNR) of the encrypted image were observed to vary between about 9.5㏈ to 7.5㏈. In addition, visual test indicate that our schemes are capable of providing a high degree of data hiding with much lower computational costs.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.