• 제목/요약/키워드: computational distance step

검색결과 32건 처리시간 0.022초

1차원 수치모형의 가변 계산거리간격 추정 기법 (Estimation Technique of Computationally Variable Distance Step in 1-D Numerical Model)

  • 김극수;김지성;김원
    • 한국수자원학회논문집
    • /
    • 제44권5호
    • /
    • pp.363-376
    • /
    • 2011
  • 하천 홍수해석 분야에서 가장 널리 이용되고 있는 1차원 동수역학 수치모형의 입력자료는 상하류단 경계조건, 조도계수, 하도단면 등이며, 계산 시간간격 및 거리간격의 선정은 계산결과의 정확성, 안정성, 효율성 확보를 위한 핵심 요소이다. 본 연구에서는 기존 단면간격 선정기법의 이론적 배경을 검토하였고, 매 시간단계별로 도출되는 흐름특성을 반영하여 계산거리간격을 추정하는 가변 계산거리간격 추정 기법을 제안하였다. 제안된 기법을 1차원 부정류 수치모형과 연계하여 Teton 댐 붕괴 및 한강 홍수 사상에 대해 적용함으로써 기존 고정 계산거리간격 추정 기법에 의한 해석결과와 비교하였다. 더 많은 내삽단면이 사용될 경우, 수치 수렴성 실험 결과는 수치해의 정확성과 안정성이 높아짐을 나타내었고, 본 연구에서 제안된 기법은 기존 고정 계산거리간격 추정기법보다 적은 단면개수로 동일한 정도의 정확도를 나타냄으로써 계산 효율성을 크게 향상시켰다. 본 연구에서 개발된 기법의 실무적용을 통해 정확성과 안정성뿐만 아니라 높은 효율성을 갖는 하천 홍수해석이 가능할 것으로 판단된다.

Inverse Offset Method for Adaptive Cutter Path Generation from Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.21-30
    • /
    • 2007
  • The inverse offset method (IOM) is widely used for generating cutter paths from the point-based surface where the surface is characterised by a set of surface points rather than parametric polynomial surface equations. In the IOM, cutter path planning is carried out by specifying the grid sizes, called the step-forward and step-interval distances respectively in the forward and transverse cutting directions. The step-forward distance causes the chordal deviation and the step-forward distance produces the cusp. The chordal deviation and cusp are also functions of local surface slopes and curvatures. As the slopes and curvatures vary over the surface, different step-forward and step-interval distances are appropriate in different areas for obtaining the machined surface accurately and efficiently. In this paper, the chordal deviation and cusp height are calculated in consideration with the surface slopes and curvatures, and their combined effect is used to estimate the machined surface error. An adaptive grid generation algorithm is proposed, which enables the IOM to generate cutter paths adaptively using different step-forward and step-interval distances in different regions rather than constant step-forward and step-interval distances for entire surface.

평면곡선에 대한 Hausdorff 거리 계산의 가속화 기법에 대한 연구 (Efficient Hausdorff Distance Computation for Planar Curves)

  • 김용준;오영택;김명수
    • 한국CDE학회논문집
    • /
    • 제15권2호
    • /
    • pp.115-123
    • /
    • 2010
  • We present an efficient algorithm for computing the Hausdorff distance between two planar curves. The algorithm is based on an efficient trimming technique that eliminates the curve domains that make no contribution to the final Hausdorff distance. The input curves are first approximated with biarcs within a given error bound in a pre-processing step. Using the biarc approximation, the distance map of an input curve is then approximated and stored into the graphics hardware depth-buffer by rendering the distance maps (represented as circular cones) of the biarcs. We repeat the same procedure for the other input curve. By sampling points on each input curve and reading the distance from the other curve (stored in the hardware depth-buffer), we can easily estimate a lower bound of the Hausdorff distance. Based on the lower bound, the algorithm eliminates redundant curve segments where the exact Hausdorff distance can never be obtained. Finally, we employ a multivariate equation solver to compute the Hausdorff distance efficiently using the remaining curve segments only.

빠른 클러스터 개수 선정을 통한 효율적인 데이터 클러스터링 방법 (Efficient Data Clustering using Fast Choice for Number of Clusters)

  • 김성수;강범수
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.1-8
    • /
    • 2018
  • K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate ($V_j$) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using $V_j$ probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

부화소 움직임 추정을 위한 고속 탐색 기법 (A Fast Search Algorithm for Sub-Pixel Motion Estimation)

  • 박동균;조성현;조효문;이종화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.26-28
    • /
    • 2007
  • The motion estimation is the most important technique in the image compression of the video standards. In the case of next generation standards in the video codec as H.264, a high compression-efficiency can be also obtained by using a motion compensation. To obtain the accurate motion search, a motion estimation should be achieved up to 1/2 pixel and 1/4 pixel uiuts. To do this, the computational complexity is increased although the image compression rate is increased. Therefore, in this paper, we propose the advanced sub-pixel block matching algorithm to reduce the computational complexity by using a statistical characteristics of SAD(Sum of Absolute Difference). Generally, the probability of the minimum SAD values is high when searching point is in the distance 1 from the reference point. Thus, we reduced the searching area and then we can overcome the computational complexity problem. The main concept of proposed algorithm, which based on TSS(Three Step Search) method, first we find three minimum SAD points which is in integer distance unit, and then, in second step, the optimal point is in 1/2 pixel unit either between the most minimum SAD value point and the second minimum SAD point or between the most minimum SAD value point and the third minimum SAD point In third step, after finding the smallest SAD value between two SAD values on 1/2 pixel unit, the final optimized point is between the most minimum SAD value and the result value of the third step, in 1/2 pixel unit i.e., 1/4 pixel unit in totally. The conventional TSS method needs an eight.. search points in the sub-pixel steps in 1/2 pixel unit and also an eight search points in 1/4 pixel, to detect the optimal point. However, in proposed algorithm, only total five search points are needed. In the result. 23 % improvement of processing speed is obtained.

  • PDF

진동하는 충돌 제트의 스케일링과 효율적인 수치 모사 (EFFICIENT SIMULATION AND SCALING OF OSCILLATORY IMPINGING JETS)

  • 김성인;박승오;홍승규;이광섭
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.32-38
    • /
    • 2005
  • Present study simulates oscillatory supersonic impinging jet flows using the axisymmetric Navier-Stokes code. To capture the salient features of flow oscillation and overcome the divergence during the initial transient period, several tests have been conducted for the grid and time step sizes. The results also show that the effects of the inlet flow condition at the nozzle exit and turbulence on the oscillatory behavior of supersonic impinging jets are negligible. Frequencies of the surface pressure oscillation obtained by the selected numerical method are in good accord with the measured impinging tones for various cases of nozzle-to-plate distance. Two seemingly different staging behaviors with nozzle-to-plate distance and nozzle pressure variations are found to correlate well if the frequency and distance are normalized by the length of the first shock cell.

실용적인 스텝크기 선택 알고리듬을 고려한 연속조류계산 시스템의 개발 (The Improvement of Continuation Power Flow System Including the Algorithm of Practical Step Length Selection)

  • 송화창;이병준;권세혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.190-196
    • /
    • 1999
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near at steady-state voltage instability point in conventional power flow. Continuation power flow consists of predictor and corrector. In prddictor, the direction vector at the resent solution is caluculated and the initial guess of next solution is determined at the distance of step length. The selection of step length is a very important part, since computational speed and convergence performance are both greatly affected by the choice of the step length. This paper presents the practical step length selection algorithm using the reactive power generation sensitivith. In numulation, the proposed algorithm is compared with step length selection algorithm using TVI(tangent vector index).

  • PDF

공용중 도로하부의 굴착터널 해석 및 계측 연구 (An Analytical and Experimental Study on the Mechanical Behavior of Excavating Turnels beneath the Roadway)

  • 정광모;방명석
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.99-104
    • /
    • 2012
  • A turnelling work beneath roadways or railways in use is unsafe and dangerous. A turnelling method should be analytically and experimentally studied to verify stability and safety of excavating works by construction step. The conventionally analytical method was ineffective in computational time and cost, so the new analytical method named homogenuity method, was developed and verified compared with analytical results. That method was applied to parameterly study the effect of distance of steel supports and overburdening height of soil. It showed that the homogenuity method was very practical and effective in step-by-step analysis considering construction sequences. A measuring device was set at the construction field and mechanical behavior was monitored during construction. Measuring values are larger than analytical values because impact of inserting steel pipes, lowering level of underground water and vibration of passing vehicles affected soil density during construction, but those values were within allowable limits.

THE CALIBRATION ESTIMATION USING TWO-STEP NEWTON'S ALGORITHM IN TWO-PHASE SAMPLING

  • Son, Chang-Kyoon;Yum, Joon-Keun
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper, we consider to the adjustment weighting procedure in the two phase sampling scheme. In general, the unit nonresponses may be occured in the final survey operation. When the unit nonresponse be generated in survey, it is able to use the auxiliary variable for estimating of interest variable. In this viewpoint, we use the two kinds level of auxiliary variable, $X_{1k}$ and $X_{2k}$ for the calibration procedure. We proprose the two-step Newton's method in the calibration estimation procedure for the two phase sampling.