• Title/Summary/Keyword: compressor system

Search Result 1,076, Processing Time 0.028 seconds

Correlation on Compressor Discharge Temperature of System A/C using PWM Compressor in Heating Mode (PWM 압축기를 이용한 시스템에어컨의 난방운전 시 압축기 토출온도 상관식)

  • Lee, S.H.;Kwon, Y.C.;Chang, K.S.;Heo, S.H.;Kim, D.H.;Youn, B.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1095-1100
    • /
    • 2006
  • An experimental study has been performed to investigate the correlation on compressor discharge temperature of system A/C in heating mode. Indoor and outdoor temperatures, the heating capacity, compressor discharge temperature and loading time are measured by the psychrometric calorimeter. The system is controlled by applying the scroll compressor, which Is operated by PWM valve and loading duty. With increasing outdoor temperature, the heating capacity increases, With increasing indoor temperature, it decreases. Also, with increasing loading duty the heating capacity increases. According to the increase in outdoor temperature and loading duty, compressor discharge temperature increases. From these experimental data, the correlation on compressor discharge temperature is proposed. It is expressed as a function of indoor temperature, outdoor temperature, and loading duty. The correlation obtained from the present study is agreed with the experimental data within $2^{\circ}C$.

  • PDF

Fault Diagnosis of Screw type Air Compressor (스크루형 공기압축기의 고장진단)

  • Bae Yong-hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper describes the application of fault tree technique to analyze of compressor failure. Fault tree analysis technique involves the decomposition of a system into the specific form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this research. fault trees for failure analysis of screw type air compressor are made. This fault trees are used to obtain minimal cut sets from system failure and system failure rate for the top event occurrence can be calculated. It is Possible to estimate air compressor reliability by using constructed fault trees through compressor failure example. It is Proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

Noise and Vibration Analysis of Rotary Compressor by SEA (SEA에 의한 회전 압축기의 소음 진동 해석)

  • 황선웅;안병하;정의봉;김규환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.964-968
    • /
    • 2003
  • Hermetic rotary compressor is one of the most Important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of He system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration. it is necessary to identify sources of noise and vibration and effectively control then. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

Conceptual system design of multistage centrifugal air-compressor (다단 원심압축기의 개념설계)

  • Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1086-1093
    • /
    • 1997
  • Conceptual system design of a multistage centrifugal air-compressor is the first loop of design procedure. The properly designed system is important for compactness, low manufacturing cost, easy controllability, fast extension for the new specification of the compressor. A simple procedure of conceptual system design is proposed in the present study using simple analysis. A few examples of the procedure for a real system are shown and several design aspects are discussed.

The Development of a super high speed motor driving system for the direct drive type turbo compressor (직접 구동방식의 터보 압축기를 위한 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최중경
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.219-222
    • /
    • 2002
  • There are screw, reciprocating type turbo compressor by structure in an air compressor which is essential equipment on the industrial spot. Recently, the application range of a turbo compressor tend to be wide gradually. And this type of compressor needs high speed rotation of impeller in structure so high ratio gearbox and conventional induction motor driving required. This mechanical system have results of increased moment of inertia and mechanical friction loss. Recent studies of modern turbo compressor have been applied to developing super high speed BLDC motor and driver which remove gearbox that make its size small and mechanical friction loss minimum. To accomodate this tendency, we tried to develope a super high speed motor drive system for 150Hp, 70,000rpm direct drive Turbo compressor using DSP(Digital Signal Processor) and SVPWM(Space Vector Modulation PWM) technique. The results of this specific application show that super high speed driver and controller could be implemented well with digital electronics.

  • PDF

Performance Analysis of a Combined Scroll Expander-compressor unit for a Fuel Cell System (연료전지용 스크롤 팽창기-압축기 성능해석)

  • Kim, S.J.;Ahn, J.M.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • This paper introduces a conceptual design of a combined scroll expander-compressor unit for a fuel cell. Since air discharged out of the fuel cell stack has still high pressure energy, some power can be extracted from the air by directing it to pass through an expanding device. Such extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed for a 1kW-class fuel cell. The orbiting scroll members of the expander and the compressor were made to share three of common drive shafts installed in the mid frame plate. Performance analysis for the combined expander-compressor unit showed that the installation of this unit could reduce the auxiliary power consumption in the fuel cell by about 42%.

  • PDF

Motor Drive System Development of Hybrid Electric Air-con Compressor for HEV (하이브리드 차량을 위한 하이브리드 전동식 압축기 모터 드라이브 시스템 개발)

  • Jung, Tae-Uk;Park, Sung-Jun;Kim, Sung-Il;Hong, Jung-Pyo;Yun, Cheol-Ho;Cha, Hyun-Rok;Kim, Hyung-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1075-1076
    • /
    • 2007
  • The HEV (Hybrid Electrical Vehicle) becomes commercialized recently because of high fuel efficiency and low air pollution. The highest output power system except the traction motor is an air conditioner compressor in HEV system. The full or hybrid electric compressor is applied for HEV. The general HEC (Hybrid Electric Compressor) requires the half power motor and drive system of the full electric compressor because the rated output power of motor drive system is designed to charge the minimum cooling capacity at the time of idle stop. Therefore, this hybrid electric is more economical and practical solution. In this paper, we studied about the motor drive system of hybrid electric compressor for HEV. The applied voltage specification is 42 V, an IPMSM (Interior Permanent Magnet Synchronous Motor) is designed and applied as the compressor drive motor.

  • PDF

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.