• 제목/요약/키워드: compressor algorithm

검색결과 120건 처리시간 0.026초

반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계 (Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method)

  • 강현수;황인주;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

원심압축기 최적화를 위한 연구(II): 인공지능망과 유전자 알고리즘 (Optimization of a Centrifugal Compressor Impeller(II): Artificial Neural Network and Genetic Algorithm)

  • 최형준;박영하;김재실;조수용
    • 한국항공우주학회지
    • /
    • 제39권5호
    • /
    • pp.433-441
    • /
    • 2011
  • 원심압축기 임펠러의 최적화연구를 수행하였다. 최적화를 위한 알고리즘은 ANN를 기본으로 하였으며, 초기의 ANN 학습은 DOE를 사용하여 ANN을 효과적으로 형성하였다. DOE에서는 설계변수가 목적함수에 미치는 주효과와 상호 교호작용에 대한 예측을 할 수 있었다. 최적화과정에서 ANN의 향상을 위하여 GA를 사용하여 각 세대에서의 설계변수에 따른 목적함수가 일정값 이하가 되는 경우에는 수치해석을 통하여 ANN을 세대별로 향상시켰다. 6세대 이 후에는 ANN에 의한 예측값과 CFD의 예측값과의 차이가 1% 미만에 도달하였다. 총 21세대를 거쳐서 압축비와 효율과의 pareto를 형성할 수 있었다. 본 연구에서는 최적화를 위한 계산시간을 기울기 기반의 최적화시간 정도로 단축하면서도 다목적함수의 최적화의 결과를 얻을 수 있었다.

이산화탄소에어컨의 효율적인 운용을 위한 실용알고리즘 (Practical Algorithms for the Effective Operation of a $CO_2$ Air-conditioner)

  • 한도영;박승호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.435-440
    • /
    • 2009
  • For the effective control of a $CO_2$ air-conditioning system, the system high-side pressure algorithm, the indoor temperature algorithm, and the outdoor fan algorithm were developed. The system high-side pressure algorithm was composed of the setpoint algorithm, the reset algorithm, and the electronic expansion valve control algorithm. The indoor temperature algorithm was composed of the compressor control algorithm and the indoor fan control algorithm. These algorithms were tested by using mathematical models developed from the previous study. Results from the setpoint step change test and the disturbance test showed good control performances. Therefore, algorithms developed in this study may practically used for the control of a $CO_2$ air-conditioning system.

  • PDF

원심압축기 최적 임펠러 형상설계에 관한 연구 (A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor)

  • 조수용;이영덕;안국영;김영철
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.11-16
    • /
    • 2013
  • A numerical study was conducted to improve the performance of an impeller of centrifugal compressor. Nine design variables were chosen with constraints. Only meridional contours and blade profile were adjusted. ANN (Artificial Neural Net) was adopted as a main optimization algorithm with PSO (Particle Swarm Optimization) in order to reduce the optimization time. At first, ANN was learned and trained with the design variable sets which were obtained using DOE (Design of Experiment). This ANN was continuously improved its accuracy for each generation of which population was one hundred. New design variable set in each generation was selected using a non-gradient based method of PSO in order to obtain the global optimized result. After $7^{th}$ generation, the prediction difference of efficiency and pressure ratio between ANN and CFD was less than 0.6%. From more than 1,200 design variable sets, a pareto of efficiency versus pressure ratio was obtained and an optimized result was selected based on the multi-objective function. On this optimized impeller, the efficiency and pressure ratio were improved by 1% and 9.3%, respectively.

연료전지 자동차용 전자 제어식 $CO_2$ 냉방 시스템의 성능 특성에 관한 연구 (Studies on the Performance Characteristics of an Electronically Controlled $CO_2$ Air Conditioning System for Fuel Cell Electric Vehicles)

  • 김성철;이동혁;이호성;원종필;이대웅;이원석
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.150-157
    • /
    • 2008
  • The main objective of this paper is to investigate the performance characteristics of a $CO_2$ air conditioning system for fuel cell electric vehicles (FCEV). The present air conditioning system for FCEV uses the electrically driven compressor and electrically controlled expansion valve for $CO_2$ as a working fluid. The experimental work has been done with various operating conditions, which are quite matching the actual vehicle's driving conditions such as different compressor speed and high pressure to identify the characteristics of the system. Experimental results show that the cooling capacity and coefficient of performance (COP) were up to 6.3kW and 2.5, respectively. This paper also deals with the development of optimum high pressure control algorithm for the transcritical $CO_2$ cycle to achieve the maximum COP.

고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구 (Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade)

  • 안병진;정기호;김귀순;임진식;김유일
    • 한국추진공학회지
    • /
    • 제6권3호
    • /
    • pp.29-36
    • /
    • 2002
  • 2차원, 3차원 비압축성 Navier-Stokes 방정식을 이용하여 DCA 압축기 익렬의 수치해석을 수행하고, 여러 가지 입사각에 대해 실험치와 비교.검토하였다. SIMPLE 알고리즘을 적용한 2차원, 3차원 코드는 대류항의 이산화에 하이브리드 도식을, 집중격자기법을 사용할 때 발생할 수 있는 압력진동해를 방지하기 위하여 PWIM을 사용하였다. 캐스케이드 유동을 예측하는데 있어서 가장 중요한 요소 중의 하나가 난류모델링이다. 이는 캐스케이드 내의 유동이 역압력구배에 의한 박리와 재부착 등의 복잡한 양상을 보이기 때문이다. 본 연구에서는 계산시간의 효율성을 고려해 $\kappa$-$\varepsilon$ 벽법칙 모델을 사용하였다.

효율적인 공기압축기 운영을 위한 이상진단모델 연구 (Development of Diagnosis of Trouble Model for Effective Operation of Air-compressor)

  • 임상돈;정영득;김종래
    • 대한안전경영과학회지
    • /
    • 제16권3호
    • /
    • pp.239-248
    • /
    • 2014
  • Most systems used in industrial sites, actually have non-linearity and uncertainty. Therefore there are a lot of difficulties in evaluating conditions of these systems. Generally, the quantitative analysis and expression are found hard because the general public cannot easily make an accurate interpretation on the systems. Thus development of a system that utilizes an expertise from skilled analysts is required. In this research, a real-time sensor signal conditioning system and Fuzzy-expert system have been separately set up into an inference algorithm. So that it ensures a fast, accurate, objective and quantitative operational condition value provided to the manager. Therefore, FE_AFCDM is suggested in this literature, as an effective system for diagnosing the problems related to the air compressor. It can quantify the uncertain and absurd condition to operate the air compressor facilities safely and financially.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가 (Performance Assessment of MDO Optimized 1-Stage Axial Compressor)

  • 강영석;박태춘;양수석;이세일;이동호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.397-400
    • /
    • 2011
  • 소형 가스터빈 엔진에 장착 가능한 저압단 축류 압축기의 공력성능 및 구조적 안정성을 동시에 고려한 최적화 설계를 수행하였다. 근사모델을 구축하여 유전알고리즘을 이용하여 전역 최적화 해를 도출하였다. 최적 설계된 압축기의 동익단은 Hub쪽에서 날개의 부하가 커지되, Tip쪽에서 입사각이 0에 가깝게 설계되었다. 한편 동익의 형상은 허브쪽에서 사다리꼴 모양으로 수렴이 되어 구조적 안정성을 확보하도록 설계가 되었다. 최종적인 수치해석 결과 작동점에서 동익단의 효율은 87.6%이며 구조적 안정성을 나타내는 안전계수는 3이상을 확보하였다.

  • PDF