Asteris, Panagiotis G.;Ashrafian, Ali;Rezaie-Balf, Mohammad
Computers and Concrete
/
제24권2호
/
pp.137-150
/
2019
In this paper, surrogate models such as multivariate adaptive regression splines (MARS) and M5P model tree (M5P MT) methods have been investigated in order to propose a new formulation for the 28-days compressive strength of self-compacting concrete (SCC) incorporating metakaolin as a supplementary cementitious materials. A database comprising experimental data has been assembled from several published papers in the literature and the data have been used for training and testing. In particular, the data are arranged in a format of seven input parameters covering contents of cement, coarse aggregate to fine aggregate ratio, water, metakaolin, super plasticizer, largest maximum size and binder as well as one output parameter, which is the 28-days compressive strength. The efficiency of the proposed techniques has been demonstrated by means of certain statistical criteria. The findings have been compared to experimental results and their comparisons shows that the MARS and M5P MT approaches predict the compressive strength of SCC incorporating metakaolin with great precision. The performed sensitivity analysis to assign effective parameters on 28-days compressive strength indicates that cementitious binder content is the most effective variable in the mixture.
To date, methods used to assess the interfacial transition zone (ITZ), which represents the boundary between the aggregate and paste inside concretes, have primarily relied on destructive tests, and non-destructive tests has received little attention until recently. This study assessed the interfaces of concretes with lightweight aggregates based on electrochemical impedance spectroscopy (EIS) for high-strength concretes and examined the possibility of estimating the compressive strength of concretes through non-destructive testing using EIS. The experimental results revealed that the impedance of the hardened cement increased with increasing compressive strength and aggregate density. In particular, when the results of impedance measurement were displayed as a Nyquist plot, the intercept of the x-axis depicting the effective conductivity was proportional to the compressive strength. Furthermore, an equivalent circuit was selected to interpret the correlation between cement aggregates and impedance. Consequently, the compressive strength was found to increase with the value of the resistances of the electrolyte filled in continuous pores in the cement aggregate. And, the pores formed in the ITZ affect this value. The resistance at the ITZ for different aggregates was also obtained, and it was found that the resistance was consistent with the results predicted by SEM images of the ITZ and correlated with the strength of the concretes. The proposed method can be used as a way to easily determine the strength of cement according to differences in aggregate.
PURPOSES : The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS : Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS : It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS : This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.
압축력을 받는 발사체의 추진제 탱크 구조는 좌굴에 의한 파손이 발생할 위험이 크다. 탱크 구조와 같이 두께가 얇고 반지름이 큰 대형 경량 구조물은 제작 과정이 어렵고 복잡하므로 시험 후 사용을 위해 비파괴적 시험법을 이용한 좌굴 하중 예측이 요구된다. 압축 하중-고유 진동수와의 관계를 이용하여 좌굴 하중을 예측하는 Vibration Correlation Technique(VCT)에 관한 많은 연구가 수행되었으나 좌굴 하중을 정확히 예측하기 위하여 큰 압축 하중을 필요로 하는 시험이 요구되었고 구조물의 내부 압력이 증가됨에 따라 예측 정확도가 현저히 떨어지는 경향을 보였다. 본 논문에서는 내압 증가에 따라 예측 정확도가 저하되는 경향과 원인을 분석하고 유한요소해석 결과와 압축 시험 결과를 혼합한 VCT를 제안하여 시험 후 추진제 탱크의 사용이 가능할 정도의 낮은 압축 하중 시험 값에서도 좌굴 하중 예측 정확도를 증대시킬 수 있는 방법을 제안하였다. 제안된 방법에 의한 좌굴 예측값은 실제 좌굴 시험 값과 매우 잘 일치하였다.
This paper aims to develop a prediction model for the hardened properties of waste LCD glass that is used in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. We also summarized the testing results of the hardened properties of a variety of waste LCD glass concretes and discussed the effect of factors such as the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. This study also applied a hyperbolic function, an exponential function and a power function in a non-linear regression analysis of multiple variables and established the prediction model that could consider the effect of the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. Compared with the testing results, the statistical analysis shows that the coefficient of determination $R^2$ and the mean absolute percentage error (MAPE) were 0.93-0.96 and 5.4-8.4% for the compressive strength, 0.83-0.89 and 8.9-12.2% for the flexural strength and 0.87-0.89 and 1.8-2.2% for the ultrasonic pulse velocity, respectively. The proposed models are highly accurate in predicting the compressive strength, flexural strength and ultrasonic pulse velocity of waste LCD glass concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.
Artificial neural network models can be successfully used to simulate the complex behavior of many problems in civil engineering. As compared to conventional computational methods, this popular modeling technique is powerful when the relationship between system parameters is intrinsically nonlinear, or cannot be explicitly identified, as in the case of concrete behavior. In this investigation, an artificial neural network model was developed to assess the residual compressive strength of self-compacted concrete at elevated temperatures ($20-900^{\circ}C$) and various relative humidity conditions (28-99%). A total of 332 experimental datasets, collected from available literature, were used for model calibration and verification. Data used in model development incorporated concrete ingredients, filler and fiber types, and environmental conditions. Based on the feed-forward back propagation algorithm, systematic analyses were performed to improve the accuracy of prediction and determine the most appropriate network topology. Training, testing, and validation results indicated that residual compressive strength of self-compacted concrete, exposed to high temperatures and relative humidity levels, could be estimated precisely with the suggested model. As illustrated by statistical indices, the reliability between experimental and predicted results was excellent. With new ingredients and different environmental conditions, the proposed model is an efficient approach to estimate the residual compressive strength of self-compacted concrete as a substitute for sophisticated laboratory procedures.
This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15 MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.
In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.
Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.
Paper sludge ash was assured as material of a sort of pozzolan. For the reason of fluidity decrease caused by the strong absorption of paper stooge ash and the decrease of compressive strength in case of using over30% replacement by the weight of cement, paper sludge ash is not suitable for blending material. Therefore, it is necessary to find proper replacement ratios between paper sludge and blast furnace slag to insure compressive compensation and appropriate slump. Accordingly, as varied the blending ratios of paper sludge and blast furnace slag, testing mortar was made. This study was aimed to investigate the possibility of using blending replacement of paper sludge ash and blast furnace slag throughout compressive test, flow test, SEM(Scanning Eletron Microscope), MIP(Mercury Intrusion Porosity test), and TG-DTA(Thermal analysis).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.