• 제목/요약/키워드: compressive strength loss

검색결과 303건 처리시간 0.026초

고로슬래그 미분말을 사용한 모르타르의 물성 (The properties of mortar using ground granulated blast-furnace slag)

  • 김태형;김종인;최영화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.105-110
    • /
    • 1998
  • The propose of this study is to examine the mechanical properties of mortar using ground granulated blast-furnace(GGBF) slag. In this study, the mortar replaced by varying fineness and content of GGBF slag is investigated through the change of compressive strength, chemical resistance and weight loss. As the result, it has been found that GGBF slag increase somewhat higher flow value and compressive strength. In addition, the chemical resistance of motar using GGBF slag shows higher flow that of motar not containing GGBF slag.

  • PDF

Influence of granite waste aggregate on properties of binary blend self-compacting concrete

  • Jain, Abhishek;Gupta, Rajesh;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.127-140
    • /
    • 2020
  • This study explores the feasibility of granite waste aggregate (GWA) as a partial replacement of natural fine aggregate (NFA) in binary blend self-compacting concrete (SCC) prepared with fly ash. Total of nine SCC mixtures were prepared wherein one was Ordinary Portland cement (OPC) based control SCC mixture and remaining were fly ash based binary blend SCC mixtures which included the various percentages of GWA. Fresh properties tests such as slump flow, T500, V-funnel, J-ring, L-box, U-box, segregation resistance, bleeding, fresh density, and loss of slump flow (with time) were conducted. Compressive strength and percentage of permeable voids were evaluated in the hardened state. All the SCC mixtures exhibited sufficient flowability, passing ability, and resistance to segregation. Besides, all the binary blend SCC mixtures exhibited lower fresh density and bleeding, and better residual slump (up to 50% of GWA) compared to the OPC based control SCC mixture. Binary blend SCC mixture incorporating up to 40% GWA provided higher compressive strength than binary blend control SCC mixture. The findings of this study encourage the utilization of GWA in the development of binary blend SCC mixtures with satisfactory workability characteristics as a replacement of NFA.

혼화재를 사용한 고강도 경량콘크리트에 관한 실험적 연구 (An Experimental Study on High Strength Lightweight Concrete Using Compound Materials)

  • 김종인;최영화;김정훈
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.115-122
    • /
    • 2003
  • This experimental study on high strength lightweight concrete using compound materials has been performed. In which, expanded clay was used as coarse aggregate, and silica fume and fly ash as admixtures varying by 0, 10% and 0, 5, 10, 15, 20% of cement amount respectively were added. Thus, the properties of fresh and hardened concrete have been investigated. The results of this study can be summarized as follows ; Each slump loss of mixtures replaced fly ash has been decreased by increasing replacement rate. The compressive strength have shown 465, 428 and $401kgf/cm^2$ at 30, 40 and 50% of W/B in 28days respectively, all of which have satisfied the criterion $270kgf/cm^2$ of high strength lightweight concrete. The unit volume weight of hardened concrete has been decreased by increasing replacement rate of silica fume and fly ash, values of which have satisfied the criterion $2000kgf/cm^3$of light weight concrete.

  • PDF

장거리 운반 고강도 콘크리트 제조 및 품질관리 (Production and Quality Control of Long Distance Delivered High Strength Concrete)

  • 박연동;정재동;박기청;노재호;조일호;방희상;국중욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.8-13
    • /
    • 1995
  • High strength ready-miced concrete with delivering time of about 90 minutes is successfully produced at ready-mixed concrete plant and placed columns and retaining walls of a tall building without any problems. The design strength of the concrete is 450 kgf/$\textrm{cm}^2$ and the required average compressive strength is 540 kgf/$\textrm{cm}^2$ according to ACI 363R-84 report with assumed coefficient of variation of 12% For the producing of good quality concrete, many laboratary and field tests are carried out. As the results of this study, the slump loss of high strength concrete is largely influenced by kinds of superplasticizer. The measured pump pressure of high strength concrete with slump of 22cm is higher than that of normal strength concrete with slump of 18cm by about 20~30% The measured average 28-day compressive strength of the concrete is 551 kgf/$\textrm{cm}^2$ and the coefficient of variation is 2.3%

  • PDF

동결융해시험에 의한 사암 및 안산암의 풍화특성 평가 (Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test)

  • 강성승;김종인;오바라 유조;히라타 아츠오
    • 터널과지하공간
    • /
    • 제21권2호
    • /
    • pp.145-150
    • /
    • 2011
  • 사암과 안산암에 대한 풍화특성을 살펴보기 위하여 동결융해 반복시험을 실시한 후, 두 암석에 대한 중량 감소율, 탄성파속도, 일축압축강도 등의 물성 변화를 측정하였다. 중량 변화의 경우 두 암석 모두에서 동결 융해 반복 횟수가 증가함에 중량이 감소하는 경향을 보였다. 특히 안산암에서는 중량 감소 경향이 시험편에 따라 매우 불규칙하게 나타났다. 탄성파속도 변화에 있어서 사암은 5%이상의 감소 경향을 보였으며, 안산암은 동결융해 반복시험 500 사이클까지 탄성파속도 변화가 거의 없다가 1000 사이클부터 5%이상의 감소 현상을 보였다. 이것은 안산암이 비교적 풍화에 강한 암석인 반면, 사암은 풍화받기 쉬운 암석인 것을 의미한다. 또한 안산암의 탄성파속도 변화 양상은 안산암의 중량 변화와 일치한다. 사암의 일축압축시험 결과에서 일축압축강도는 동결융해 반복시험 초기 사이클 구간에서 미미한 강도저하를 보이다 64 사이클부터는 불규칙한 경향을 나타냈다. 결과적으로, 중량 감소가 적은 암석 시험편일수록 강도저하율도 작게 나타났다.

Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire

  • Nematzadeh, Mahdi;Baradaran-Nasiri, Ardalan;Hosseini, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.339-354
    • /
    • 2019
  • Reusing building materials and concrete of old buildings can be a promising strategy for sustained development. In buildings, the performance of materials under elevated temperatures is of particular interest for determining fire resistance. In this study, the effect of pozzolan and aggregate type on properties of concrete exposed to fire was investigated. In doing so, nanosilica with cement-replacement levels of 0, 2, and 4% as well as silica fume and ultrafine fly ash with cement-replacement levels of 0, 7.5, and 15% were used to study effect of pozzolan type, and recycled refractory brick (RRB) fine aggregate replacing natural fine aggregate by 0 and 100% was utilized to explore effect of aggregate type. A total of 126 cubic concrete specimens were manufactured and then investigated in terms of compressive strength, ultrasonic pulse velocity, and weight loss at $23^{\circ}C$ and immediately after exposure to 400 and $800^{\circ}C$. Results show that replacing 100% of natural fine aggregate with recycled refectory brick fine aggregate in the concretes exposed to heat was desirable, in that it led to a mean compressive strength increase of above 25% at $800^{\circ}C$. In general, among the pozzolans used here, silica fume demonstrated the best performance in terms of retaining the compressive strength of heated concretes. The higher replacement level of silica fume and ultrafine fly ash pozzolans in the mixes containing RRB fine aggregate led to a greater weight loss rate, while the higher replacement level of nanosilica reduced the weight loss rate.

석회석 미분말을 혼입한 시멘트 페이스트의 수화반응 및 역학적 특성 분석에 관한 연구 (A Study on Hydration kinetics and Mechanical Properties of Cement Paste Incoporating Limestone Filler)

  • 신기수;방미진;박기봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.230-231
    • /
    • 2017
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

  • PDF

고온에 노출된 콘크리트의 잔류압축강도특성에 관한 연구 (An Experimental Study on the Residual Compressive Strength Characteristics of Concrete Exposed to High Temperature)

  • 오병환;한승환;조재열;이성규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.285-290
    • /
    • 1994
  • The influence of elevated temperatures on the mechanical properties of concrete is important for fire-resistance studies and also for understanding the behavior of containment vessel, such as nuclear reactor pressure vessels, during service and ultimate condition. The present study is to clarify the damage/deterioration of concrete structures that are subjected to high temperature exposure. To this end, comprehensive experiments are conducted. The major test variables are the peak temperatures, rate of temperature increase, and sustained duration at peak temperature. The results include weight loss residual compressive strength and stress-strain curve. From those results, residua compressive strength formula and stress-strain relationship are proposed.

  • PDF

수중불분리성 콘크리트의 기초물성에 대하여 (Fundamental Properties of Antiwashout Underwater Concrete)

  • 김진철;정용;박성학;박기청
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.1-7
    • /
    • 1995
  • The objective of this experimental investigation was to examine the fundamental properties of antiwashout underwater concrete. Expriments were conducted on the antiwashout property in underwater, the compressive strength in the air and in underwater, setting time, slump flow loss. As a result, a dosage of 2.0-2.5kg/$\textrm{m}^3$ antiwashout admixture was found to be appropriate not to cause water pollution and to provide a reliably good compressive strength in underwater concrete. Also, the experimental results showed that the amount of less than 50mg/$\ell$ suspended solid was required to obtain the underwater to air compressive strength ratio of more than 80%

  • PDF

잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향 (The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate)

  • 정용욱;윤용호;이승한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF