• Title/Summary/Keyword: compressive strength equation

Search Result 359, Processing Time 0.024 seconds

Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design (간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Shin, Hwa-Cheol;Kim, Yong-Jic;Choi, Wook;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

Influence of residual stress due to shot peening on fatigue strength and life (피로강도 및 수명에 미치는 Shot Peening에 의한 잔류응력의 영향)

  • Lee, Jong-Gyu;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1498-1506
    • /
    • 1997
  • Procedures are presented for influence of shot peening on fatigue strength, fatigue life and effects of shot peening are discussed from experiments were taken between shot peened and unpeened SPS5, SM45C specimens. After the residual stress on shot peened specimens was measured by X-ray diffractometer, rotating bending fatigue tests were carried out. In addition, the compressive residual stress profile was obtained by the superposition method of three stresses which is based on Al-Obaid's equation. Predicted fatigue life considering residual stress profile which was obtained by the Al-Obaid's equation and another predicted fatigue life considering residual stress profile which was measured in test were compared. For the purpose of predicting fatigue life, Morrow's equation considering the residual stress and mean stress was used.

Application on the Prediction Model of the Compressive Strength of Concrete by Maturity Method (적산온도에 의한 콘크리트 압축강도 추정모델의 적용성 검토)

  • Khil, Bae-Su;Kwon, Young-Jin;Nam, Jae-Hyun;Kim, Moo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.177-183
    • /
    • 1999
  • The major object of this study is to investigate experimentally the experimental equation by the non-destructive testing methods of ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number, maturity which are applicable to the evaluation of compressive strength of concrete at early ages. Also test result of mix are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of concrete. The results show good application of Logistic curve for estimating strength development under various curing temperature. The relation between ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number and compressive strength of concrete have low correlation coefficient, but maturity method show good correlation coefficient.

  • PDF

Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method (초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상)

  • 원종필;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

Strength Prediction of Cement-Admixed using Low Plasticity Silt (저소성실트를 이용한 시멘트 혼합토의 강도 예측)

  • Park, Jongchan;Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Park, Kyunghan;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.31-38
    • /
    • 2014
  • For analysis of mechanics properties of soil cement, unconfined compressive strength has been proposed by existing case studies. In this study, mechanical changes with water content of silt, curing time and cement content were analyzed through unconfined compressive strength test. In addition, the changes for B factor by Abrams were compared with existing case studies after the prediction equations could be proposed about the unconfined compressive strength of admixed cement soil. Especially, the B constant factor was changed with soil characteristics and curing time. For analysis results of appropriateness status and unconfined compressive strength, consideration of variable form was titrated. The prediction equations at low plasticity silt admixed using the uniaxial compressive strength with applying Abrams's equation and considering cement content, curing time is proposed.

An Evaluation of Elasticity Modulus and Tensile Strength of Ultra High Performance Concrete (강섬유 보강 초고성능 콘크리트의 탄성계수 및 인장강도 평가)

  • Ryu, Gum-Sung;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • Recently, for UHPC (Ulta High Performance Concrete) which is researched actively, as the tensile strength is absolutely influenced on the content of steel fiber, in this paper, experiments of compressive strength, elasticity modulus and tensile strength were performed according to compressive strength and content of steel fiber as variables. By the test results, compressive strength, elasticity modulus and tensile strength are proportioned and have a good correlation and according to content of steel fiber, compressive and tensile strength are also proportioned and have a good correlation. In case of elasticity modulus, the difference between test and present design code is not large, so it is possible to adapt to present design code. On the other hand, in case of tensile strength, as there is no specification of present design code, new prediction equation is proposed by using nonlinear regression analysis and the proposed equation have a good correlation to test results.

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Early Estimation of Compressive Strength of Concrete Using Mineral Admixture by Refrigeration Curing Method (냉동양생에 의한 광물질 혼합 콘크리트의 압축강도 추정)

  • Sung , Chan-Yong;Cho , Il-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.55-60
    • /
    • 2004
  • This study was performed to evaluate the early estimation of compressive strength of concrete using mineral admixture by refrigeration curing method. It was a method of early decision for the property of concrete after the curing age 28days through the refrigeration curing at $-18{\pm}3^{\circ}$ for five hours. The test result was fixed connection between the curing age 28days and 31hours by the compressive strength test through the standard curing and refrigeration curing. Accordingly, it can be reduced the mistake of construction work by forecasting the property of concrete through the refrigeration curing.

Estimation of Long-term Aging Compressive Strength Through Non-Destructive Testing of Concrete Structure Using Mineral Admixtures (혼화재를 사용한 콘크리트 구조체의 비파괴 시험에 의한 장기재령 압축강도 추정)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Lee, Chang-Hyun;Lee, Seung-Jung;Kim, Kwang-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Recently, the use of mineral admixtures in concrete has been studied in many laboratories, and been applied in the field. But the non-destructive testing equation proposed in Japan for normal strength concrete has been used to determine compressive strength, because there has been a lack of systematic research on the compressive strength of concrete using mineral admixtures. For this reason, it is essential to suggest a non-destructive testing equation to estimate the compressive strength of concrete using mineral admixtures. Therefore, this study made a cylindrical specimen and core tube specimen of concrete using a mineral admixture, and suggested a strength estimation of long-term age (4 years) through non-destructive and destructive tests. The results of the research are as follows. Comparing error rates between conventional suggested equations and this estimated equation shows some differences by age, but the error rate of this study was reduced to 0.3 %~115.0 % compared to conventional equations by re-bound hammering, 0.2 %~22.8 % by the ultrasound velocity method and 0.5 %~102.3 % by complex method. Accordingly, it is judged to be suitable for assessing the compressive strength of concretes using mineral admixtures.