• Title/Summary/Keyword: compressive property

Search Result 597, Processing Time 0.021 seconds

The Synthesis and Mechanical Property of Calcium Silicate Hydrates Using the Amorphous Silicates (비정질 규산원료를 이용한 칼슘실리케이트 수화물 합성과 역학적 특성)

  • 엄태선;최연묵;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.45-55
    • /
    • 1997
  • Various kinds of amorphous silicates were used as raw materials to synthesize building materials based on calcium silicate hydrates. Relationships between the reactivities of silicates and castabilities of the building materials were investigated. In addition, effects of the reactivities of silicates on the mechanical properties of casted specimens were studied by analyzing microstructures and hydrates produced. As the reactivity of silicate increase, the press castability increases and the crystal size of hydrate and pore size also increase. For the mechanical properties, the flexural strength increases with decreasing crystal size and densifing microstructure. The compressive strength is greatly dependent on the den-sification of microstructure rather than crystal size of hydrate. Based on the results, diatomous ma-terials are desirable due to high reactivity and formation of densified microstructure. Slag and fly ash may be partially used as raw materials with amorphous silicates to manufacture building materials based on calcium silicate hydrates.

  • PDF

The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon (정선지역 철광산에 분포하는 암석의 역학적 특성)

  • Kim, Jong-Woo;Park, Chan;Kim, Ju-Hwan;Heo, Seok;Kim, Dong-Kyu;Lee, Dong-Kil;Jo, Young-Do;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.231-243
    • /
    • 2015
  • In this study, both in-situ stress measurements and a lot of laboratory rock tests were conducted at a metal mine in Jeongseon, Korea. The stress ratio obtained from in-situ stress measurements showed a tendency to decrease according to depth below surface and its average value was 1.10. The mechanical properties such as unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, shore hardness, friction angle and cohesion were investigated for the four different rocks mainly distributed at a studied mine, which were dolomite, felsite, granite and magnetite. The mechanical properties of the four different rocks were compared by means of statistical analyses, whereupon the felsite and the granite turned out to have more strength characteristics than the magnetite. The correlation of mechanical properties was also investigated, whereupon a few results against the general correlation were found out. The failure criteria of the four different rocks were finally discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion.

Strength property improvement of OCC-based paper by chemical and mechanical treatments (2) (골판지 고지의 물리화학적 처리에 의한 강도향상 (제2보))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.69-69
    • /
    • 2000
  • In the previous experiment, it was found that OCC pre-treatment with Hobat mixer at 20-25% consistency for 3 hrs or more followed by the application of the equal refining time, caused the increase of tensile strength, burst strength, compressive strength and tear resistance, compared to the no pre-treated. Four completely different fibers, which were Hw-BKP, Sw-BKP, White ledger, and OCC were selected for this experiment to investigate the effect of mechanical pre-treatment process on different fibers. From the experiment, it was found that the mechanical pre-treatment did not decrease fiber length at all, but decreased freeness, compared to the no pre-treated, when the same refining time was applied WRVs of the pre-treated fibers were higher than the no pre-treated at the same freeness level. It was speculated that the mechanical pre-treatment induced only hydrophilic nature of fibers without damaging fiber length by delaminating fiber walls. The fiber surface area and the physical strength differences of handsheets will be discussed in the next publication.

  • PDF

Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar (탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구)

  • Jang, Bong Jin;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Ju, Min Kwan;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant (새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석)

  • Lee, Byoung Jun;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.

Performance Improvement of High Performance Shrinkage Reducing Agent using Early Strength Improving Agent (조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.296-302
    • /
    • 2016
  • Studies aimed at reducing the occurrence of cracks by the shrinkage of concrete are in demand because the repair and reinforcement for cracks caused by declining concrete durability costs the user to maintain the concrete structure. In particular, in underground power facilities for power transmission, the cost is a heavy burden to repair and reinforce. For this reason, underground power facilities demanded effective methods for crack reduction at the engineering design step. This study, as a part of the development of shrinkage reducing agent for low shrinkage concrete on underground power facilities, investigated TEA to complement the shrinkage reducing agent to improve the early strength of concrete. In the case of TEA 3% as a shrinkage reducing agent, the early strength was improved significantly, and the shrinkage reducing effect was excellent. In addition, TEA 3.0 % and the shrinkage reducing agent 2.0 % showed excellent shrinkage property and compressive strength. On the other hand, more study of shrinkage reducing materials, including performance reviews on the shrinkage reducing materials with variable factors and type of materials, will be needed to generalize these results.

An Experimental Study on the Property of the Concrete with Glass Hollow Micro Sphere (유리질중공미소구체를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang-Heon;Kim, Se-Hwan;Park, Young-Shin;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.160-166
    • /
    • 2014
  • In this research, as a measure of reducing energy lost through external wall, we used Glass Hollow Micro Sphere (HMS) to improve insulation performance to structural concrete. The following is a result of experimenting concrete using HMS. As usage of HMS, decrease in slump arose and it is judged as a need of using superplasticizer. Replacement ratio increasing more and more, amount of air showed tendency to decrease and compressive strength decreased for interfacial adhesion had not been formed. as replacement ratio and unit volume decreased. It appears that thermal conductivity decreased about 30.0~46.5 percent as compared with normal weight concrete.

Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values (반발경도와 초음파속도를 이용한 수중 콘크리트 구조물의 압축강도 예측 기술)

  • Shin, Eun-Seok;Lee, Ji-Sung;Park, Seung-Hee;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.118-125
    • /
    • 2014
  • As the earth's current global warming has caused elevation of sea water temperature, size of storms is foreseen to increase and consequently large damages on port facilities are to be expected. In addition, due to the improved processing efficiency of port cargo volume and increasing necessity for construction of eco-friendly port, demands for various forms of port facilities are anticipated. In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of smart green harbor system. A new methodology to estimate the underwater concrete strengths is proposed and its feasibility is verified throughout a series of experimental works.

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling (이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.295-300
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

THE PHYSICAL PROPERTIES AND HEALING EFFECT OF CALCIUM SULFATE-HYDROXYAPATITE COMPOUND ON ROOT PERFORATION (Calcium sulfate-Hydroxyapatite 혼합재의 물성 및 치근천공 치유효과에 관한 연구)

  • Lee, Seung-Jong;Kim, Kyoung-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.739-750
    • /
    • 1997
  • Treatment of root perforation elicits special considerations due to its blood-contaminated circumstances. It is known that conventional dental restorative materials are all leaking. Calcium sulfate is the material which react with water to become chemically set. This study, therefore, was performed to develop a new compound containing calcium sulfate and to evaluate its physical and biological characteristics. Three materials were used, IRM, calcium sulfate, calcium sulfate-hydroxyapatite compound. The composition of the calcium sulfate-hydroxyapatite compound was basically 50 % of calcium sulfate and 50 % of hydroxyapatite mixed with guajacol. The materials were mixed in conventional way and underwent four physical test procedures, setting time, solubility test, compressive strength, and marginal leakage test. All materials were evaluated under the scanning electron microscope to examine the marginal sealing ability. Animal experiment was also performed to test the materials' tissue response. Twenty-four dog's premolars were tested with either furcation perforations or apical retro-fillings. From the results, we found that calcium sulfate possess the good marginal sealing ability. However, calcium sulfate creates many voids which is caused by crystal thrusting action when it reacts with water. It seemed that the voids caused disintegration of the material which eventually lead to tissue reaction. By compounding calcium sulfate and hydroxyapatite, we were able to obtain the better physical properties but it showed larger marginal gap between the material and the root surface. Within the six weeks observation period, both IRM and calcium sulfate-hydroxyapatite compound showed good tissue responses in animal experiment. It is concluded that calcium sulfate would be the material of choice in root perforation repair, but the physical property needs to be further improved.

  • PDF