• Title/Summary/Keyword: compressive performance

Search Result 1,798, Processing Time 0.028 seconds

Evaluation on High Altitude Electromagnetic Pulse(HEMP) Protection Performance of Carbon Nanotube(CNT) Embedded Ultra-High Performance Concrete(UHPC) (탄소나노튜브(CNT)를 혼입한 초고성능 콘크리트(UHPC)의 고고도 전자기파(HEMP) 방호성능 평가)

  • Jung, Myungjun;Hong, Sung-gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2019
  • In this study, to evaluate the High Altitude Electromagnetic Pulse(HEMP) protection performance of UHPC/CNT composites by the content of Carbon nanotubes(CNTs), Electromagnetic Shielding Effectiveness(SE) test was performed based on MIL-STD-188-125-1. And the results were verified by applying the Antenna theory. In the case of UHPC with a thickness of 200 mm mixed with 1 % CNT of cement weight, the SE was 28.98 dB at 10 kHz and 45.94 dB at 1 GHz. Then the Scabbing limit thickness for bullet proof was computed based on the result of compressive strength test which was 170 MPa, and it was examined whether it satisfied the HEMP protection criteria. As a result, the required HEMP shielding criteria were satisfied in all frequency ranges as well as the scabbing limit thickness was reduced by up to 43 % compared with that of ordinary concrete.

AHP-Based Evaluation Model for Optimal Selection Process of Patching Materials for Concrete Repair: Focused on Quantitative Requirements

  • Do, Jeong-Yun;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.87-100
    • /
    • 2012
  • The process of selecting a repair material is a typical one of multi-criteria decision-making (MCDM) problems. In this study Analytical Hierarch Process was applied to solve this MCDM problem. Many factors affecting a process to select an optimal repair material can be classified into quantitative and qualitative requirements and this study handled only quantitative items. Quantitative requirements in the optimal selection model for repair material were divided into two parts, namely, the required chemical performance and the required physical performance. The former is composed of alkali-resistance, chloride permeability and electrical resistivity. The latter is composed of compressive strength, tensile strength, adhesive strength, drying shrinkage, elasticity and thermal expansion. The result of the study shows that this method is the useful and rational engineering approach in the problem concerning the selection of one out of many candidate repair materials even if this study was limited to repair material only for chloride-deteriorated concrete.

Bond behavior of lightweight concretes containing coated pumice aggregate: hinged beam approach

  • Beycioglu, Ahmet;Arslan, Mehmet E.;Bideci, Ozlem S.;Bideci, Alper;Emiroglu, Mehmet
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.909-918
    • /
    • 2015
  • This paper presents an experimental study for determining the bond performance of lightweight concretes produced using pumice aggregate coated with colemanite-cement paste. For this purpose, eight hinged beam specimens were produced with four different concrete mixtures. 14 mm deformed bars with $10{\Phi}$ development lengths were selected constant for all test specimens. All the specimens were tested in bending and load-slip values were measured experimentally to determine the effect of colemanite-cement coated pumice aggregate on bond performances of lightweight concretes. Test results showed that, colemanite-cement coated pumice aggregate increases compressive strength and bond performance of the lightweight concretes, considerably.

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

An Experimental Study on the Basic Properties and the Control Properties of Crack for Face Slab Concrete in CFRD (CFRD 표면 차수벽 콘크리트의 기본 물성 및 균열 제어 특성에 관한 실험 연구)

  • 우상균;송영철;원종필;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.681-686
    • /
    • 2001
  • The purpose of this study is to provide the optimum mix design of concrete to be placed at the face slab concrete in CFRD(Concrete Faced Rockfill Dam) for pumped storage power plants. The basic performance tests including compressive strength, modulus of elasticity, flexural strength and the control properties of crack including plastic shrinkage, drying shrinkage were conducted for concrete using fly ash and polypropylene fiber. From this study, the fly ash concrete represented the better results in the aspects of basic performance, control properties of crack and economy than ordinary portland cement concrete. Especially the concrete mix design containing 20% of fly ash is recommended to be applied in the construction of the face slab concrete in CFRD for pumped storage power plants.

  • PDF

An Experimental Study on the Effect for Replacement of Pozzolanic Admixtures Influencing to the Properties of High-Performance Concrete - Part2 : Properties of Fresh Concrete - (고성능콘크리트의 특성에 미치는 혼화재 치환변화의 영향에 관한 실험적 연구 - 제2보 : 경화상태의 특성 -)

  • 윤기원;조병영;최청각;이정희;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.26-29
    • /
    • 1995
  • Continued form part 1, this study is aimed for analyzing the property of hardened concrete According to the replacing change of fly ash and silica fume which has influence on the properties of high performance xoncrete. From the test results, the compressive and the drying shrinkage Strength are high when the replacing ratio of silica fume increases and the tensile strength appears high when the replacing of fly ash increases.

  • PDF

An Experimental Study on the Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속 재료변화에 따른 고성능 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 김은호;정덕우;홍상희;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.563-568
    • /
    • 2002
  • This paper is a fundamental study on the mechanical properties of the high performance concrete confined with metal lath, glass and carbon fiber laterally. According to the results, it shows that the compressive strength increases by 9%, 8% and 6% in metal lath carbon fiber and glass fiber in case of W/B 30% respectively. In case of W/B 30% and 40%, flecxural strength shows largely in order of carbon fiber, metal lath, glass fiber. In strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. But, elastic modulus shows the similar tendency between confined concrete and plain concrete. Length change ratio by drying shrinkage shows little a bit in order of carbon fiber, glass fiber and metal lath due to confinement.

  • PDF

Evaluation on the Physical Characteristics of Cement-Type Solidification using Weathered Granite St Yellow Soil as an Aggregate (마사토, 황토를 골재로 이용한 시멘트계 고화재의 물리적 특성 평가)

  • 김특준;김인섭;이종규;추용식;김병익;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.601-606
    • /
    • 2002
  • This study explored physical properties of a hardened cement and a concrete specimen using a high performance cement type solidification consisting of a weathered granite soil and a yellow soil mainly. Also the development of high performance cement type solidification was purposed for an intensity improvement and a long-term durability. As the experimental results, a mortar used by the weathered granite soil shows positive result, however using the yellow soil as a mortar Shows less positive result at the compressive strength. Also the dynamic modulus of elasticity measurement result, the concrete specimens used by the weathered granite and the yellow soil reached above 90%, so it seems to have the durability of freezing and thawing.

  • PDF

High Performance Concrete Mixture Design using Artificial Neural Networks (신경망을 이용한 고성능 콘크리트의 배합설계)

  • 양승일;윤영수;이승훈;김규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.545-550
    • /
    • 2002
  • Concrete is one of the essential structural materials in the construction. But, concrete consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructor. Therefore, concrete mixes depend on experiences of experts. However, it is more and more difficult to determine concrete mixes design by empirical means because more ingredients like mineral and chemical admixtures are included. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network are used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength and slump are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

  • PDF

An Experimental Study on the Seismic Performance of RC Piers using High-strength Concrete and High-strength Rebars (고강도콘크리트와 고강도철근을 사용한 교각의 내진거동 실험연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.712-715
    • /
    • 2004
  • Five RC piers were tested under a constant axial load and a cyclically reversed horizontal load to investigate the behavior of RC piers used in the high-strength concrete and the high-strength rebars. Seismic design of piers were conducted under the same design, according to the current Korean Bridge Design Standard. The parameters of the test were concrete compressive strength and steel strength, steel ratio. The test results indicated that RC piers of the high-strength concrete and high-strength rebars exhibited ductile behavior and seismic performance.

  • PDF