• Title/Summary/Keyword: compressive performance

Search Result 1,796, Processing Time 0.029 seconds

Evaluation of Impact Resistance of Steel Fiber and Organic Fiber Reinforced Concrete and Mortar

  • Kim, Gyu-Yong;Hwang, Heon-Kyu;Nam, Jeong-Soo;Kim, Hong-Seop;Park, Jong-Ho;Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.377-385
    • /
    • 2012
  • In this study, the Impact resistance of steel fiber and organic fiber reinforced concrete and mortar was evaluated and the improvement in toughness resulting from an increase in compressive strength and mixing fiber for impact resistance on performance was examined. The types of fiber were steel fiber, PP and PVA, and these were mixed in at 0.1, 0.5 and 1.0 vol.%, respectively. Impact resistance is evaluated with an apparatus for testing impact resistance performance by high-speed projectile crash by gas-pressure. For the experimental conditions, Specimen size was $100{\times}100{\times}20$, 30mm ($width{\times}height{\times}thickness$). Projectile diameter was 7 and 10 mm and impact speed is 350m/s. After impact test, destruction grade, penetration depth, spalling thickness and crater area were evaluated. Through this evaluation, it was found that as compressive strength is increased, penetration is suppressed. In addition, as the mixing ratio of fiber is increased, the spalling thickness and crater area are suppressed. Organic fibers have lower density than the steel fiber, and population number per unit area is bigger. As a result, the improvement of impact resistance is more significant thanks to dispersion and degraded attachment performance.

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash (타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가)

  • Kwon, Seung-Jun;Yoon, Yong-Sik;Park, Sang-Min;Kim, Hyeok-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.647-653
    • /
    • 2016
  • In the paper, durability performance in FA (Fly Ash) blended concrete is evaluated considering replacement of FA with TDFA (Tire Derived Fuel Ash) from 3.0% to 12%. TDFA is a byproduct from combustion process in thermal power plant, where chopped rubber is mixed for boiling efficiency. This is the 1st study on application of TDFA to concrete as mineral admixture. For the work, concrete samples containing 0.5 of w/b (water to binder) ratio and 20% replacement ratio of FA are prepared. With replacing FA with TDFA to 12%, durability performance is evaluated regarding compressive strength, carbonation, chloride diffusion, and porosity. The results of compressive strength, carbonation, and porosity tests show reasonable improvement in durability performance to 12% replacement of TDFA. In particular, clear decreasing diffusion coefficient is observed with increasing TDFA replacement due to its packing effect. Concrete containing TDFA can be effective for durability improvement when workability is satisfied in mixing stage.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Invention Methodology of High Strength Insulated Steel Stud using TRIZ (강도향상형 단열스터드 개발을 위한 트리즈 기법 활용방안)

  • Cho, Bong-Ho;Kim, Sun-Sook;Kwak, Chai-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.33-41
    • /
    • 2013
  • This study used TRIZ methodology to develop a new steel stud for load bearing or non-load bearing walls. Technical contradiction of high strength with high insulation performance can be solved by TRIZ. We suppose a new shape of high-strength insulated (HSI) Stud. This study showed TRIZ can be usefully applied to the development of new construction materials by solving technical contradictions. Insulation performance of HSI stud can be improved approximately 12% compared to the standard KS stud. Although up to 3.9% of the flexural strength degradation is expected, compressive strength of HSI studs are improved from 4.1% to 8%. In conclusion, improved thermal performance and higher strength can be expected for the HSI stud developed using TRIZ.

Fire Resistance of Ultra-High Performance Concrete According to the Amount of Polypropylene Fiber (폴리프로필렌 섬유 혼입량에 따른 초고성능 콘크리트의 내화 특성)

  • Choi, Jeong-Il;Cho, Ki Hyeon;Yu, Hyun Sang;Kim, Hee Joon;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2020
  • The purpose of this study is to investigate the fire resistance of ultra-high-performance concrete according to the amount of polypropylene fiber. Different mixtures according to the amount of polypropylene fiber were exposed to a maximum temperature of 900℃; and explosive spalling, residual compressive strength, and ultrasonic velocity of each specimen were evaluated. Test results showed that the fire resistance can be improved by including a small amount of polypropylene fiber in ultra-high performance concrete. It was not observed that explosive spalling occur at a temperature of 900℃ when the polypropylene fibers over 0.4% were included. Residual compressive strength and ultrasonic velocity decreased by 48% and 44%, respectively, compared to those at room temperature.

An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans

  • Elif Varol;Didem Benzer;Nazli Tunar Ozcan
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • Natural pozzolans are used as additives in cement to develop more durable and high-performance concrete. Pozzolanic activity index (PAI) is important for assessing the performance of a pozzolan as a binding material and has an important effect on the compressive strength, permeability, and chemical durability of concrete mixtures. However, the determining of the 28 days (short term) and 90 days (long term) PAI of concrete mixtures is a time-consuming process. In this study, to reduce extensive experimental work, it is aimed to predict the short term and long term PAIs as a function of the chemical compositions of various natural pozzolans. For this purpose, the chemical compositions of various natural pozzolans from Central Anatolia were determined with X-ray fluorescence spectroscopy. The mortar samples were prepared with the natural pozzolans and then, the short term and the long term PAIs were calculated based on compressive strength method. The effect of the natural pozzolans' chemical compositions on the short term and the long term PAIs were evaluated and the PAIs were predicted by using multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS) model. The prediction model results show that both reactive SiO2 and SiO2+Al2O3+Fe2O3 contents are the most effective parameters on PAI. According to the performance of prediction models determined with metrics such as root mean squared error (RMSE) and coefficient of correlation (R2), ANFIS models are more feasible than the multiple regression model in predicting the 28 days and 90 days pozzolanic activity. Estimation of PAIs based on the chemical component of natural pozzolana with high-performance prediction models is going to make an important contribution to material engineering applications in terms of selection of favorable natural pozzolana and saving time from tedious test processes.

Preparation and Performance of Aluminosilicate Fibrous Porous Ceramics Via Vacuum Suction Filtration

  • Qingqing Wang;Shaofeng Zhu;Zhenfan Chen;Tong Zhang
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.12-20
    • /
    • 2024
  • This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 ℃, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 ℃ to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 ℃, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.