• Title/Summary/Keyword: compressive fracture strain

Search Result 113, Processing Time 0.609 seconds

직물 복합재료 계란판의 압축 특성과 에너지 흡수율 (Compression Characteristics and Energy Absorption of Composite Egg-Box Panels)

  • 정지규;장승환
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1603-1610
    • /
    • 2006
  • In this paper compressive characteristics of composite egg-box panels were investigated and energy absorption was calculated from the nominal stress-strain relations obtained by the compressive tests. Several different stacking sequences and number of plies were introduced for investigation of static compression characteristics and the energy absorption rates of composite egg-box panels. The compressive stress-strain relation and energy absorption of various composite egg-box panels were compared with those of aluminium egg-box panels. From the test results it was found that the fracture behavior of composite egg-box panel was affected by stacking angle causing different local deformation, during lay-up and draping processes and types of prepreg; that is, plain weave carbon/epoxy and 4-harness satin glass/epoxy. The energy absorption capacity of composite egg-box panels were proved to be higher than that of aluminium egg-box panels with low mass.

치아파절시험과 유한요소해석에서의 치경 변형률에 관한 연구 (Comparison of Strain on Dental Cervical Line between Tooth Fracture Test and Finite Element Analysis)

  • 유의식;전경진
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.87-94
    • /
    • 2010
  • When occlusal force is applied to a tooth, stress concentration occurs on the dental cervical line. This study investigated to find the maximum force and strain of natural teeth using an Instron and strain gauges, comparing the strain of cervical enamel using finite element analysis(FEA). Tests were conducted with a mandibular first premolar applying the conditions of occlusion. Then, the FEA was processed with the same as conditions of the fracture test. The test showed that the maximum force, maximum compressive strain and maximum tensional strain was $278{\pm}26$ N, $0.668{\times}10^{-3}{\pm}0.678{\times}10^{-3}$ and $0.248{\times}10^{-3}{\pm}0.102{\times}10^{-3}$, respectively. It was found that six of eight measured strains were within the range of estimated strains by the FEA. Even though it was assumed that properties of FE models were isotropic, it could prove useful as a reference in understanding the tendency of dental strain.

폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성 (The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber)

  • 김영익;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제52권4호
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique)

  • 이진경;박영철;구후택;박동성;이규창
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 고온파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite at High Temperature using Acoustic Emission Technique)

  • 이진경;박영철;강동현;박동성;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.72-77
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

  • PDF

시료 파괴 시 발생하는 SP에 관한 기초 연구 (The basic study about streaming potential generated by specimen fracture)

  • 김종욱;조성준;박삼규;성낙훈;송영수
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.291-296
    • /
    • 2007
  • We measured potential waveform of load, displacement, micro electric signal generated by rock and mortar fracture using PXI A/D Converter. The rock type used for measurement was used granite, limestone and sandstone, and mortar specimen. we made measuring equipment of physical properties to confirm basic information of physical properties, measured physical properties of rock engineering, electric resistivity and seismic velocity. Potential waveform system was built using PXI A/D Converter and measured potential waveform of load, displacement, micro-electric signal generated using this during uniaxial compressive test by the specimen finished such test of physical properties. Using the saturated rock and mortar specimen, micro electric signal increased, and It didn't increase a signal in dried rock and mortar specimen according as load and strain rate increases. But signal also increased in saturated or dried specimen in case of sandstone. It was possible to check the close correlation relationship the signal and fracture behavior by a compressive load as the signal of fracture position was increased bigger than the other position. It was also possible to check the correlation relationship between physical properties and micro geo-electric signal.

  • PDF

TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구 (A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite)

  • 이진경;박영철;구후택;이규창
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구 (A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio)

  • 박종건
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

A failure criterion for RC members under triaxial compression

  • Koksal, Hansan Orhun
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.137-154
    • /
    • 2006
  • The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.