• Title/Summary/Keyword: compressive force

Search Result 610, Processing Time 0.028 seconds

An Experimental Study on the Shear Resistance of Dowel Bars (장부철근의 전단저항에 대한 실험적 연구)

  • 신장호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.216-223
    • /
    • 1995
  • This research is aimed to investigate the influence of the structural parameters on dowel action of reinforcing bars in reinforced concrete members. I~ollowing the previous research, $^{(3.6)}$ a total of forty two specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, reinforcing bar size and bar distance were taken as main test variables for constant compressive strength of concrete. ]+om the test results, the structural behavior of all specimens was almost linear up to failure load. It is seen that dowel force increases as concrete cover increases. Reinforcing bar size and bar distance hardly affects dowel force. It is found that the dowel forces obtained by this experimental research is relatively close to that of regression analysis results and White's equation.

A Study on the Antibiosis and Physical & Mechanical Characteristics of Dental Resin (치과용 레진의 항균성 및 물리·기계적 특성에 대한 연구)

  • Kim, Ju-Won;Choi, Sung-Suk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.179-191
    • /
    • 2004
  • A series of experiments were conducted on dental denture base resins for their antibiosis. They were also compared in terms of physical and mechanical characteristics, which led to the following results: 1. As for bacterial deposition, the old products showed a wide range of distribution, while those products containing C. S. had restraints. 2. Among the products containing C. S., those ones of 7, 12 and 20% all had restraints of similar size to slop further bacterial growth. In the meanwhile, the old products had only small-size restraints for bacterial growth. 3. The following changes were observed in the aspect physical characteristics: There were no significance between the old products and the C. S. products. Thus, as for compressive force, the average${\pm}$standard deviation of the old products was $27.4083.{\pm}1.7397$, and those C. S. products of 20% showed the similar $27.5600{\pm}.1976$. In addition, there were no significance between the old products and those ones containing C. S. in terms of tensile force. The tensile force of the old products was $114.5600{\pm}.8916$ in average${\pm}$standard deviation, while there was no differences among the C. S. products of 7, 12, and 20% in that matter.

  • PDF

Biomechanical Analysis of the Artificial Discs (인공디스크에 대한 생체역학적 분석)

  • Kim Young-Eun;Yun Sang-Seok;Jung Sang-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media

  • Taj, Muhammad;Safeer, Muhammad;Hussain, Muzamal;Naeem, Muhammad N.;Ahmad, Manzoor;Abbas, Kamran;Khan, Abdul Q.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments by exerting continuous pressure in opposite directions to the incipient buckling of the filaments. In this article a mechanical model is applied to account the effects of this media on the buckling behavior of intermediate filaments network of cytoskeleton. The model immeasurably associates; filament's bending rigidity, adjacent system elasticity, and cytosol viscosity with buckling wavelength, buckling growth rate and buckling amplitude of the filaments.

Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability (경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰)

  • 김재홍;황재익;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.