• Title/Summary/Keyword: compressive Young's modulus

Search Result 112, Processing Time 0.024 seconds

Predicting the Uniaxial Compressive Strength and Young's Modulus of Rocks using Ultrasonic Velocity (초음파속도를 이용한 암석의 일축압축강도와 탄성계수 예측)

  • Choi, Gilhyun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.53-58
    • /
    • 2014
  • The uniaxial compressive strength and Young's modulus of intact rocks are the most important analytical parameters for design of rock mass structures. But the preparation of the samples for uniaxial compressive test is a hard and time consuming task. By using ultrasonic test, engineers can predict the analytical parameters that is the uniaxial compressive strength and Young's modulus. The uniaxial compressive test and ultrasonic test were carried out 115 samples of igneous rocks, 74 samples of metamorphic rocks and 55 samples of sedimentary rocks and, after regression analysis of the test results, best fit equations for predicting the uniaxial compressive strength and Young's modulus are proposed. In order to obtain a better correlations coefficient between uniaxial compressive strength and P-wave velocity, the P-wave velocity were multiplied by density values. The proposed equations for predicting uniaxial compressive strength and Young's modulus using ultrasonic test provide reliable results.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Dielectric and Remnant Mechanical Properties Due to Cyclic Stress in PZT Ceramics (반복응력에 따른 PZT 세라믹스의 유전 및 잔류 기계적 특성)

  • 태원필;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.829-834
    • /
    • 1994
  • The aim of this study is to investigate the changes in dielectric properties, Young's modulus and remnant compressive strength with compressive cyclic loading in PZT of tetragonal, MPB and rhombohedral composition. Higher relative dielectric constants appeared in the poled condition than the unpoled condition for all the compositions. After poling treatment remarkably higher relative dielectric constants were observed particularly in MPB, tetragonal compositions. Until five percent of the expected fatigue life was exhausted, the dielectric constant increased with compressive cyclic stress in MPB and rhombohedral while it remained nearly constant in tetragonal. During the subsequent compressive cyclic stress, dielectric constant decreased in all the three compositions. As the compressive cyclic stress is applied the change of Young's modulus was coincided with the change of remnant compressive strength.

  • PDF

Changes of Material Properties of Pre-heated Tuff Specimens (예열처리된 응회암 시험편의 물성 변화)

  • Yoon, Yong-Kyun;Kim, Sa-Hyun
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • Tuff specimens were thermally treated with predetermined temperatures of 200, 400 and $600^{\circ}C$ to construct specimens simulating weathered tuff rocks. Specific gravity, absorption ratio, elastic wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio and slake-durability index were measured for pre-heated specimens. Heating of rock specimens entailed the degradation of material properties except for slake-durability index. It was found that correlations among P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio are high. Regression equations which use the P-wave velocity as an independent variable were presented to evaluate uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio.

Engineering Geological Properties of Some Domestic Marbles (국내산(國內産) 대리석(大理石)의 지질공학적(地質工學的) 특성(特性))

  • Cheong, Young Wook;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.411-424
    • /
    • 1990
  • Mechanical, physical and petrographic properties of seventeen marble specimens collected from ten marble mines in Korea were investigated. Studied marbles were mainly composed of calcite, dolomite, and various amounts of serpentine, tremolite, olivine, quartz and opaque minerals. Complete and sutured textures were dominant. Compressive strength measured normal to the bedding plane is larger almost two times than that measured parallel to the bedding plane. From the results of Shore hardness test on marbles, water content was an important factor to decrease Shore hardness values. Engineering geological properties, especially, compressive strength, Young's modulus, wear resistance and water absorption could be controlled by the presence of quartz, and the type of marble texture. Water absorption-porosity, compressive strength-Young's modulus, and impact strength index-Los Angeles abrasion couples show good correlation. According to the comparative utility as commercial stone, it could be concluded that marbles from the Banglim mine, Songbo mine, Kwangdeok mine and Bongjeong mine were superior to that of other studied marbles.

  • PDF

Characteristics of Physical Properties According to Compound Condition of Grout Mortar (그라우트 모르타르 배합조건에 따른 물리적 성질의 특성)

  • Mun, Tae-Chul;Kang, Choo-Won;Lee, Hyo
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • To look over the effect of mixed proportion of cement, sand and water on strength, 162 tests were made for 9 mix proportions. It was observed that strength increased as water in the mixture is reduced. As a result of the control of sand ratio by 50%, the execution strength increased when the sand ratio is raised. Strength was consistent during curing period on each mix proportion, but there were sections where it suddenly increased. Poisson's ratio widely ranged from 0.13 to 0.27, and Young's modulus also broadly ranged from 13.79MPa to 33.25MPa. Poisson's ratio had nothing to do with uniaxial compressive strength, wheras Young's modulus was concerned with it. Young's modulus from theory and experiment showed similar outcome on the 3rd curing day, however, the strength from theory was higher than that from test after 3rd day. In consequence, there was a great change of strength between 3rd and 7th curing day. In addition, it is more efficient to use field strength value between the 3rd and 7th day and to apply Young's modulus on it for determining the exact time.

Engineering Properties of Some Sedimentary Rocks from the Gyeongsang Supergroup (경상계(慶尙系) 퇴적암(堆積岩)의 공학적(工學的) 성질(性質)에 관(關)한 연구(硏究))

  • So, Chil-Sup;Choi, Byoung-Ryol
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 1975
  • The engineering properties of some Gyeongsang sedimentary rocks with respect to the grain size and the orientation of bedding planes were studied. The suitability of the rocks for civil and architectural construction was also investigated. The porosity of the rocks increases in proportion to the grain size. The ratio of the strain due to stress perpendicular to the bedding planes to the strain resulting from stress parallel to the bedding planes increases as the grain size decreases. The study indicates however, that the ratio of Young's modulus due to stress perpendicular to the bedding planes to Young's modulus resulting from stress parallel to the bedding planes increases in proportion to the grain size. The compressive strength of the sandstones studied is much greater than the strength of the conglomerate or shale. Only the coarse grained sandstone can be used for civil and architectural construction, regardless of the orientation of bedding planes. The relationships between compressive strength and density, elasticity and porosity, and compressive strength and mineral content were also studied.

  • PDF

Correlation between Engineering Properties of Rocks in Korea (한반도의 암종별 공학적 특성의 상관성 분석)

  • Kim Gyo-Won;Kim Su-Jeong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.59-68
    • /
    • 2006
  • About 6,000 rock properties obtained from laboratory tests are collected from various projects conducted in Korea Peninsular and the distribution of the properties such as uniaxial compressive strength, cohesion, kriction angle, tangential strength, Young's modulus, p-wave velocity and S-wave velocity are analysed and correlated each other. The empirical equations deduced with 84% of reliability would be useful for preliminary design of geo-structures.

A Compilation and Evaluation of Thermal and Mechanical Properties of Bentonite-based Buffer Materials for a High- level Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.90-103
    • /
    • 2002
  • The thermal and mechanical properties of compacted bentonite and bentonite-sand mixture were collected from the literatures and compiled. The thermal conductivity of bentonite is found to increase almost linearly with increasing dry density and water content of the bentonite. The specific heat can also be expressed as a function of water ontent, and the coefficient of thermal expansion is almost independent on the dry density. The logarithm of unconfined compressive strength and Young’s modulus of elasticity increase linearly with increasing dry density, and in the case of constant dry density, it can be fitted to a second order polynomial of water content. Also the unconfined compressive strength and Young’s modulus of elasticity of the bentonite-sand mixture decreases with increasing sand content. The Poisson’s ratio remains constant at the dry density higher than 1.6 Mg/m$_3$, and the shear strength increases with increasing dry density.