• Title/Summary/Keyword: compression shear tests

Search Result 356, Processing Time 0.031 seconds

Shear and CBR Characteristics of Dredge Soil-Bottom Ash-Waste Tire Powder-Mixed Lightweight Soil (준설토-저회-폐타이어 혼합경량토의 전단 및 CBR 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.34-39
    • /
    • 2011
  • This study investigated the shear and CBR characteristics of dredge soil-bottom ash-waste tire powder-mixed lightweight soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared with various contents of waste tire powder ranging from 0 to 100% at 50% intervals by the weight of the dry dredged soil. Several series of triaxial compression tests and CBR tests were conducted. The shear strength characteristics of the lightweight soil were compared using two different shear tests (triaxial compression test and direct shear test). The experimental results indicated that the internal friction angle of the lightweight soil obtained by the direct shear tests was greater than that by the triaxial shear tests. However, the cohesion value obtained by the triaxial shear tests was greater than that by the direct shear tests. The CBR value of the lightweight soil decreased from 35% to 15% as waste tire powder content increased.

Experimental study on crushable coarse granular materials during monotonic simple shear tests

  • Liu, Sihong;Mao, Hangyu;Wang, Yishu;Weng, Liping
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.687-694
    • /
    • 2018
  • To investigate the crushing behaviour of coarse granular materials, a specifically designed, large-scale simple shear apparatus with eight-staged shearing rings was developed. A series of monotonic simple shear tests were conducted on two kinds of coarse granular materials under different vertical stresses and large shear strains. The evolution of the particle breakage during the compression and simple shearing processes was investigated. The results show that the amount of particle breakage is related to the particle hardness and the state of the stresses. The amount of particle breakage is greater for softer granular materials and increases with increasing vertical stresses. Particle breakage may tend towards a critical value during both the compression and the shearing processes. Particle breakage mainly occurs during the processes of confined compression and contraction.

Comparison of Shear Strength Characteristics of Unsaturated Soil From Triaxial Compression Tests with Direct Shear Tests (삼축시험과 직접전단시험에 의한 불포화토의 전단특성 비교)

  • Hwang, Hui-Seok;Choi, Young-Nam;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, shear strength characteristics of an unsaturated soil were compared using triaxial compression tests(CD) and modified direct shear tests and thus feasibility of the newly modified direct shear testing apparatus was confirmed. The shear strength tests of unsaturated state with a soil sample, obtained from a slope where debris flow occurred at Yangpyeong in Kyeunggi province during 2010, were performed. Both tests showed a linear relationship of matric suction with the shear strength under low level of matric suction. The apparent cohesion of the unsaturated soil was also increased linearly with increase of matric suction. As results of comparing two different testing apparatus, estimated values of shear strength parameters of unsaturated soil($c^{\prime}$, ${\phi}^b$) were slightly larger in the modified direct shear tests due to constraint effect of shear box.

Mechanical Properties of Municipal Solid Wastes (비위생 매립토의 역학적 물성)

  • Mok, Young-Jin;Kim, Dae-Il;Cho, Eun-Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1377-1383
    • /
    • 2005
  • Mechanical properties of Municipal Solid Wastes(MSW) and their influencing parameters were studied by using a series of triaxial compression tests and resonant column tests. The shear strength of MSW can be modeled by a bilinear failure criterion. As the unit weight increasing, cohesion and internal friction were increased linearly on semi-log scale. As the proportion of waste to soil increases, maximum shear moduli tend to decrease whereas minimum damping ratios increase. Shear moduli and damping of degradable waste are higher than those of non-degradable MSW.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Shear Rate Effect on Undrained Shear Behavior of Holocene Clay (자연 퇴적 점성토의 비배수 전단강도에 미치는 전단 속도의 영향)

  • Jung, Min-Su;Chae, Jong-Gil;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1181-1192
    • /
    • 2008
  • A laboratory investigation was carried out into effects of strain rate on undrained shear behavior of Holocene clay underneath Kobe Airport with an objective to evaluate the factor of safety of the retaining structure built on it. It was examined in a series of triaxial compression and extension tests performed using different rate of axial straining. A comparative compression test in which the strain rate was changed in steps was also carried out. Similar tests were performed in constant-volume direct shear box (DSB) test. And, the deformation characteristics of the clay were also examined in order to evaluate the variation of stiffness during undrained shearing. It was found that the undrained strength increased with not only the shear rate but also the consolidation period. ISOTACH properties seemed a key to govern the undrained shear behavior.

  • PDF

A Study on Strength Characteristics of Sand and Gravel with/without Fines (세립재의 유무에 의한 조립재료의 강도특성 연구)

  • Im, Eun-Sang;Snin, Dong-Hoon;Cho, Seong-Eun;Jeon, Jea-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.827-830
    • /
    • 2008
  • In this study, large triaxia mpression tests of sand-gravel soils were carry out to clarify the influence of fines on shear strength characteries. Two soil specimens with/without fines that is used for construction material of dam were prepared. One was reproduced with wide range of grain size and the other was removed fines below 2mm from the one. The compaction tests proposed by our center were performed to obtain relative density of the specimens, and then each specimen was adjusted two dry density. The large triaxial compression tests were carry out under CD condition. Based on the results, the sand-gravel soils with low fines content has no effect on shear strength characteries.

  • PDF

The Behavior of Overall Strain Range in Undrained Triaxial Compression Tests for a Weathered Soil (풍화토의 비배수 삼축압축시험시 전체 변형률 영역의 거동에 관한 연구)

  • 안영대;오세붕;고동희;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • In order to evaluate the behavior of overall range from small strain to failure, the triaxial compression tests with LVDTs were performed for local displacement measurements. According to the result it was possible to evaluate the total range behavior from 0.001% to 10% and both secant moduli of undisturbed and disturbed weathered soils had a similar result in the small slain level. The normalized shear moduli$(G/G_{max})$ in the undrained triaxial compression tests were similar to those of resonant column tests but the maximum shear moduli$(G/G_{max})$ were strongly affected by the ratio of saturation. As a result of parametric study a constitutive model with anisotropic hardening could predict the behavior of total strain range.