• Title/Summary/Keyword: compression parameters

검색결과 1,053건 처리시간 0.629초

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • Journal of Powder Materials
    • /
    • 제22권5호
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

Muscle Fatigue Nlonitoring Using a DSP Chip and PC (DSP칩과 PC를 이용한 근피로도 측정)

  • Cho, I. J.;Lee, J.;Choi, Y. H.;Kim, S. H.
    • Journal of Biomedical Engineering Research
    • /
    • 제9권2호
    • /
    • pp.211-214
    • /
    • 1988
  • As a muscular contraction is sustained, the power spectrum of the myoelectric signal is compressed into lower frequencies. The median frequency appears to be the prefered parameters to monitor this compression. This paper describes a technique and a device which provide an estimate of the median frequency using a TMS32020 DSP chip and IBM PC for tracking of this parameter. Results obtained from myoelectric signal are presented and discussed.

  • PDF

A concrete plasticity model with elliptic failure surface and independent hardening/softening

  • Al-Ghamedy, Hamdan N.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.35-48
    • /
    • 1994
  • A plasticity-based concrete model is proposed. The failure surface is elliptic in the ${\sigma}-{\tau}$ stress space. Independent hardening as well as softening is assumed in tension, compression, and shear. The nonlinear inelastic action initiates from the origin in the ${\sigma}-{\varepsilon}$(${\tau}-{\gamma}$) diagram. Several parameters are incorporated to control hardening/softening regions. The model is incorporated into a nonlinear finite element program along with other classical models. Several examples are solved and the results are compared with experimental data and other failure criteria. "Reasonable results" and stable solutions are obtained for different types of reinforced concrete oriented structures.

Strength and durability studies on high strength concrete using ceramic waste powder

  • Karthikeyan, B.;Dhinakaran, G.
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.171-181
    • /
    • 2017
  • This paper summarizes the study on effect of ceramic waste powder as partial substitute to cement in binary blend and along with silica fume in ternary blend high strength concrete in normal and aggressive environments. Strength parameters such as compression & tension and durability indices such as corrosion measurement, deterioration, water absorption and porosity were studied. Ceramic waste powder was used in three different percentages namely 5, 10 and 15 with constant percentage of silica fume (1%) as substitutes to cement in ternary blend high strength concrete was investigated. After a detailed investigation, it was understood that concrete with 15% ceramic waste powder registered maximum performance. Increase of ceramic waste powder offered better resistance to deterioration of concrete.

A Prediction of Behavior of Compacted Granite Soils Based on the Elasto-Plastic Constitutive Model (탄,소성 구성모델을 이용한 다짐화강토의 응력-변형률 거동예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제40권2호
    • /
    • pp.148-158
    • /
    • 1998
  • The aims of this study are to evaluate the application on the stress-strain behavior of granite Soil using Lade's double work hardening constitutive model based on the theories of elasticity and plasticity. From two different sites of construction work, two disturbed and compacted weathered granite samples which are different in partical size and degree of weathering respectively were obtained. The specimen employed were sampled at Iksan and Pochon in order to predict the constitutive model. Using the computer program based on the regression analysis, 11 soil parameters for the model were determined from the simple tests such as an isotropic compression-expansion test and a series of drained conventional triaxial tests. In conclusion, it is shown that Lade's double work hardening model gives the good applicability for processing of stress-strain, work-hardening, work-softening and soil dilatancy. Therefore, this model in its present form is applicable to the compacted decomposed granite soil.

  • PDF

Rotating helium-recondensing system using Roebuck refrigerator (Roebuck 냉동기를 응용한 회전형 헬륨 재응축 장치)

  • 정상권;이창규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제11권4호
    • /
    • pp.464-471
    • /
    • 1999
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field winding in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are also explained to identify entropy generation that degrades the performance of the system.

  • PDF

Optimal Design of a 3 Watt GM-JT Refrigeratior at 4 K (4 K, 3 Watt급 GM-JT냉동기의 최적설계)

  • Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 1994
  • An optimal design for Gifford-McMahon/Joule-Thomson(GM-JT) refrigerators was performed by a numerical method. The design goal was to meet the cooling requirement for MRI systems, which was 3 Watt at 4 K. A general cycle analysis program was written to calculate the cooling capacity of the GM-JT refrigerators for the givenstage GM refrigerator. The program was executed for a specific refrigerator with various design parameters. The optimal values for the maximum cooling were found for the sizes of the heat exchangers, the mass flow rate of helium, and the compression pressure.

  • PDF

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.

A Fair Investigation on Safety Factor of Slope by Model Tests (모형실험에 의한 사면 안전율의 적정성 연구)

  • Kim, Yong-Sik;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1313-1323
    • /
    • 2008
  • The purpose of this study is to understand behaviors of slopes and determine soil parameters of slopes through the triaxial compression test and the direct shear test. Following results were obtained by comparing and analyzing model tests and analysis programs of slope stability. The safety factors of the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method were similar to each other but safety factors of the Fellenius method and the Janbu method were different from the formers. It was found that the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method could be used for design but attention should be paid to the Fellenius method and the Janbu method since they underestimated safety factor.

  • PDF